Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Clustering by Deep Latent Position Model with Graph Convolutional Network

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Modèles et algorithmes pour l’intelligence artificielle (MAASAI); Inria Sophia Antipolis - Méditerranée (CRISAM); Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Laboratoire Jean Alexandre Dieudonné (LJAD); Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS); Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S); Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S); Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS); Institut National de Recherche en Informatique et en Automatique (Inria); Laboratoire de Mathématiques Blaise Pascal (LMBP); Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA); ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
    • Publication Information:
      CCSD
      Springer Verlag
    • Publication Date:
      2025
    • Collection:
      HAL Université Côte d'Azur
    • Abstract:
      International audience ; With the significant increase of interactions between individuals through numeric means, clustering of vertices in graphs has become a fundamental approach for analyzing large and complex networks. In this work, we propose the deep latent position model (DeepLPM), an end-to-end generative clustering approach which combines the widely used latent position model (LPM) for network analysis with a graph convolutional network (GCN) encoding strategy. Moreover, an original estimation algorithm is introduced to integrate the explicit optimization of the posterior clustering probabilities via variational inference and the implicit optimization using stochastic gradient descent for graph reconstruction. Numerical experiments on simulated scenarios highlight the ability of DeepLPM to self-penalize the evidence lower bound for selecting the intrinsic dimension of the latent space and the number of clusters, demonstrating its clustering capabilities compared to state-of-the-art methods. Finally, DeepLPM is further applied to an ecclesiastical network in Merovingian Gaul and to a citation network Cora to illustrate the practical interest in exploring large and complex real-world networks.
    • Accession Number:
      10.1007/s11634-024-00583-9
    • Online Access:
      https://hal.science/hal-03629104
      https://hal.science/hal-03629104v2/document
      https://hal.science/hal-03629104v2/file/DeepLPM_final.pdf
      https://doi.org/10.1007/s11634-024-00583-9
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.E204B85