Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Combining mobile-health (mHealth) and artificial intelligence (AI) methods to avoid suicide attempts: the Smartcrises study protocol

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Département Logique des Usages, Sciences sociales et Sciences de l'Information (IMT Atlantique - LUSSI); IMT Atlantique (IMT Atlantique); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT); CHRU Brest - Psychiatrie Adulte (CHU - Brest- Psychiatrie); Centre Hospitalier Régional Universitaire de Brest (CHRU Brest); Soins Primaires, Santé Publique, Registre des cancers de Bretagne Occidentale (EA7479 SPURBO); Université de Brest (UBO)-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)-Institut Brestois Santé Agro Matière (IBSAM); Université de Brest (UBO)-Université de Brest (UBO); Centre Hospitalier Régional Universitaire Montpellier (CHRU Montpellier); Hospital General Universitario "Gregorio Marañón" Madrid; Neuropsychiatrie : recherche épidémiologique et clinique (PSNREC); Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM); Centre Hospitalier Universitaire de Nîmes (CHU Nîmes); Fundación Jiménez Díaz, Universidad Autónoma de Madrid; Department of Psychiatry (Hospital Universitario Fundacion Jimenez Diaz )
    • Publication Information:
      CCSD
      BioMed Central
    • Publication Date:
      2019
    • Collection:
      Université de Montpellier: HAL
    • Abstract:
      International audience ; BACKGROUND:The screening of digital footprint for clinical purposes relies on the capacity of wearable technologies to collect data and extract relevant information's for patient management. Artificial intelligence (AI) techniques allow processing of real-time observational information and continuously learning from data to build understanding. We designed a system able to get clinical sense from digital footprints based on the smartphone's native sensors and advanced machine learning and signal processing techniques in order to identify suicide risk.METHOD/DESIGN:The Smartcrisis study is a cross-national comparative study. The study goal is to determine the relationship between suicide risk and changes in sleep quality and disturbed appetite. Outpatients from the Hospital Fundación Jiménez Díaz Psychiatry Department (Madrid, Spain) and the University Hospital of Nimes (France) will be proposed to participate to the study. Two smartphone applications and a wearable armband will be used to capture the data. In the intervention group, a smartphone application (MEmind) will allow for the ecological momentary assessment (EMA) data capture related with sleep, appetite and suicide ideations.DISCUSSION:Some concerns regarding data security might be raised. Our system complies with the highest level of security regarding patients' data. Several important ethical considerations related to EMA method must also be considered. EMA methods entails a non-negligible time commitment on behalf of the participants. EMA rely on daily, or sometimes more frequent, Smartphone notifications. Furthermore, recording participants' daily experiences in a continuous manner is an integral part of EMA. This approach may be significantly more than asking a participant to complete a retrospective questionnaire but also more accurate in terms of symptoms monitoring. Overall, we believe that Smartcrises could participate to a paradigm shift from the traditional identification of risks factors to personalized prevention ...
    • Accession Number:
      10.1186/s12888-019-2260-y
    • Online Access:
      https://hal.umontpellier.fr/hal-02561989
      https://hal.umontpellier.fr/hal-02561989v1/document
      https://hal.umontpellier.fr/hal-02561989v1/file/s12888-019-2260-y.pdf
      https://doi.org/10.1186/s12888-019-2260-y
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.ECC5EDDB