Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Modelling the modulation of cortical Up-Down state switching by astrocytes

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Artificial Evolution and Computational Biology (BEAGLE); Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS); Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Inria Lyon; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
    • Publication Information:
      HAL CCSD
      Public Library of Science
    • Publication Date:
      2022
    • Collection:
      Portail HAL de l'Université Lumière Lyon 2
    • Abstract:
      International audience ; Up-Down synchronization in neuronal networks refers to spontaneous switches between periods of high collective firing activity (Up state) and periods of silence (Down state). Recent experimental reports have shown that astrocytes can control the emergence of such Up-Down regimes in neural networks, although the molecular or cellular mechanisms that are involved are still uncertain. Here we propose neural network models made of three populations of cells: excitatory neurons, inhibitory neurons and astrocytes, interconnected by synaptic and gliotransmission events, to explore how astrocytes can control this phenomenon. The presence of astrocytes in the models is indeed observed to promote the emergence of Up-Down regimes with realistic characteristics. Our models show that the difference of signalling timescales between astrocytes and neurons (seconds versus milliseconds) can induce a regime where the frequency of gliotransmission events released by the astrocytes does not synchronize with the Up and Down phases of the neurons, but remains essentially stable. However, these gliotransmission events are found to change the localization of the bifurcations in the parameter space so that with the addition of astrocytes, the network enters a bistability region of the dynamics that corresponds to Up-Down synchronization. Taken together, our work provides a theoretical framework to test scenarios and hypotheses on the modulation of Up-Down dynamics by gliotransmission from astrocytes.
    • Relation:
      hal-03737962; https://inria.hal.science/hal-03737962; https://inria.hal.science/hal-03737962v3/document; https://inria.hal.science/hal-03737962v3/file/UpDown2022.pdf
    • Accession Number:
      10.1371/journal.pcbi.1010296
    • Online Access:
      https://inria.hal.science/hal-03737962
      https://inria.hal.science/hal-03737962v3/document
      https://inria.hal.science/hal-03737962v3/file/UpDown2022.pdf
      https://doi.org/10.1371/journal.pcbi.1010296
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.F180A6A1