Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Stability and Synchronization in Neural Fields

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Computer and biological vision (ODYSSEE); Département d'informatique - ENS-PSL (DI-ENS); École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria d'Université Côte d'Azur (CRISAM); Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Paris-Rocquencourt; Institut National de Recherche en Informatique et en Automatique (Inria)-École nationale des ponts et chaussées (ENPC); Nonlinear System Laboratory (NSL); Massachusetts Institute of Technology (MIT); This work was partially supported by Elekta Instrument AB, by the ECIP project FP6-015879 FACETS and by the EADS foundation, contract number 2118; INRIA
    • Publication Information:
      CCSD
    • Publication Date:
      2007
    • Collection:
      École des Ponts ParisTech: HAL
    • Abstract:
      Neural fields are an interesting option for modelling macroscopic parts of the cortex involving several populations of neurons, like cortical areas. Two classes of neural field equations are considered: voltage and activity based. The spatio-temporal behaviour of these fields is described by nonlinear integro-differential equations. The integral term, computed over a compact subset of $\mathbb{R}^q,\,q=1,2,3$, involves space and time varying, possibly non-symmetric, intra-cortical connectivity kernels. Contributions from white matter afferents are represented as external input. Sigmoidal nonlinearities arise from the relation between average membrane potentials and instantaneous firing rates. Using methods of functional analysis, we characterize the existence and uniqueness of a solution of these equations for general, homogeneous (i.e. independent of the spatial variable), and locally homogeneous inputs. In all cases we give sufficient conditions on the connectivity functions for the solutions to be absolutely stable, that is to say independent of the initial state of the field. These conditions bear on some compact operators defined from the connectivity kernels, the sigmoids, and the time constants used in describing the temporal shape of the post-synaptic potentials. Numerical experiments are presented to illustrate the theory. An important contribution of our work is the application of the theory of compact operators in a Hilbert space to the problem of neural fields with the effect of providing very simple mathematical answers to the questions asked by neuroscience modellers.
    • Online Access:
      https://inria.hal.science/inria-00153052
      https://inria.hal.science/inria-00153052v2/document
      https://inria.hal.science/inria-00153052v2/file/RR-6212.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.F41A65B7