Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Identification of Neurotoxic Targets of Diverse Chemical Classes of Dietary Neurotoxins/Neurotoxicants

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Date:
      2020
    • Collection:
      Purdue University Graduate School: Figshare
    • Abstract:
      Neurological disorders are a major public health concern due to prevalence, severity of symptoms, and impact on caregivers and economic losses. While genetic susceptibility likely has a role in most cases, exposure to toxicants can lead to neurotoxicity, including potentially developmental origins of adult disease or increased risk of disease onset. These exposures are not necessarily large, acute exposures, but could accumulate, with a chronic low-dose exposure, causing toxicity. This research focuses on the potential neurotoxicity of two classes of dietary toxins/toxicants, heterocyclic aromatic amines (HAAs) and per- and polyfluoroalkyl substances (PFAS). HAAs, such as PhIP, harmane, and harmine, are formed in charred or overcooked meat, coffee, tobacco, and other foods. PFAS are largely used in making household materials, but are found in small amounts in eggs and dairy products and largely in contaminated water. While these two classes are diverse in terms of structure, common neurotoxic targets and mechanisms often exist. Therefore, we tested the effects of these chemicals on cell viability and neurotoxicity. In the first aim, we aimed to elucidate the mechanism of toxicity of harmane and harmine, focusing on their ability to cause mitochondrial dysfunction. The second aim was to determine the effects of either harmane or PhIP on the nigrostriatal motor systems and motor function of rats and mice, respectively. The third aim determined the effects of PFAS on neurodevelopment of Northern leopard frogs, focusing on changes in neurotransmitter levels and accumulation in the brain. Harmane did not cause motor dysfunction, but potentially affected the nigro-striatal motor system in an age- or sex-dependent manner. PhIP had differential effects on dopamine levels over time and caused motor dysfunction after subchronic exposure in mice. Perfluorooctane sulfonate (PFOS) accumulated in the brains of frogs and PFAS caused changes in neurotransmitter levels that were dose- and time-dependent. Overall, this research ...
    • Relation:
      https://figshare.com/articles/thesis/Identification_of_Neurotoxic_Targets_of_Diverse_Chemical_Classes_of_Dietary_Neurotoxins_Neurotoxicants/12919016
    • Accession Number:
      10.25394/pgs.12919016.v1
    • Online Access:
      https://doi.org/10.25394/pgs.12919016.v1
    • Rights:
      CC BY 4.0
    • Accession Number:
      edsbas.F57D6272