Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Distance Metric Learning for Conditional Anomaly Detection
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- Author(s): Valko, Michal; Hauskrecht, Milos
- Source:
Twenty-First International Florida Artificial Intelligence Research Society Conference ; https://inria.hal.science/hal-00643244 ; Twenty-First International Florida Artificial Intelligence Research Society Conference, May 2008, Coconut Grove, Florida, United States
- Subject Terms:
- Document Type:
conference object
- Language:
English
- Additional Information
- Contributors:
Department of Computer Science - University of Pittsburgh; University of Pittsburgh (PITT); Pennsylvania Commonwealth System of Higher Education (PCSHE)-Pennsylvania Commonwealth System of Higher Education (PCSHE); Sequential Learning (SEQUEL); Laboratoire d'Informatique Fondamentale de Lille (LIFL); Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe; Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Automatique, Génie Informatique et Signal (LAGIS); Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)
- Publication Information:
HAL CCSD
AAAI Press
- Publication Date:
2008
- Collection:
Université de Lille 3 - Sciences Humaines et Sociales: HAL
- Subject Terms:
- Abstract:
International audience ; Anomaly detection methods can be very useful in identifying unusual or interesting patterns in data. A recently proposed conditional anomaly detection framework extends anomaly detection to the problem of identifying anomalous patterns on a subset of attributes in the data. The anomaly always depends (is conditioned) on the value of remaining attributes. The work presented in this paper focuses on instance-based methods for detecting conditional anomalies. The methods depend heavily on the distance metric that lets us identify examples in the dataset that are most critical for detecting the anomaly. To optimize the performance of the anomaly detection methods we explore and study metric learning methods. We evaluate the quality of our methods on the Pneumonia PORT dataset by detecting unusual admission decisions for patients with the community-acquired pneumonia. The results of our metric learning methods show an improved detection performance over standard distance metrics, which is very promising for building automated anomaly detection systems for variety of intelligent monitoring applications.
- Online Access:
https://inria.hal.science/hal-00643244
https://inria.hal.science/hal-00643244v1/document
https://inria.hal.science/hal-00643244v1/file/Valko.pdf
- Rights:
info:eu-repo/semantics/OpenAccess
- Accession Number:
edsbas.F8B0312D
No Comments.