Abstract: The effect of monosaccharides (glucose, fructose and galactose) and disaccharides (sucrose and lactose) at 10, 20 and 30 % w/v on the in-vitro aroma partitioning of C - C aldehydes and ethyl esters, as well as limonene (concentration of aroma compounds at 1 μg mL ), was studied using atmospheric pressure chemical ionisation-mass spectrometry. An increase in sugar concentration from 0 to 30 % w/v resulted in a significant increase in partitioning under static headspace conditions for the majority of the compounds (p < 0.05), an effect generally not observed when 10 % w/v sucrose was substituted with low-calorie sweeteners (p > 0.05). The complexity of the system was increased to model a soft drink design - comprising water, sucrose (10, 20 and 30 % w/v), acid (0.15 % w/v), carbonation (∼7.2 g/L CO ) and aroma compounds representative of an apple style flavouring, namely ethyl butanoate and hexanal (10 μg mL each). Although the addition of sucrose had no significant in-vivo effect, carbonation significantly decreased breath-by-breath (in-vivo) aroma delivery (p < 0.05). To understand the physical mechanisms behind aroma release from the beverage matrix, the effect of sucrose on the kinetics of the matrix components was explored. An increase in sucrose concentration from 0 to 30 % w/v resulted in a significant decrease in water activity (p < 0.05), which accounted for the significantly slower rate of self-diffusion of aroma compounds (p < 0.05), measured using diffusion-ordered spectroscopy-nuclear magnetic resonance spectroscopy. No significant effect of sucrose on carbon dioxide volume flux was found (p > 0.05). [Abstract copyright: Copyright © 2023 The Authors. Published by Elsevier Ltd. All rights reserved.]
No Comments.