Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Magnetic field distribution in magnetars

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Laboratoire de physique corpusculaire de Caen (LPCC); Université de Caen Normandie (UNICAEN); Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN); Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS); Laboratoire Univers et Théories (LUTH (UMR_8102)); Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
    • Publication Information:
      HAL CCSD
      American Physical Society
    • Publication Date:
      2019
    • Collection:
      Normandie Université: HAL
    • Abstract:
      International audience ; Using an axisymmetric numerical code, we perform an extensive study of the magnetic field configurations in non-rotating neutron stars, varying the mass, magnetic field strength and the equation of state. We find that the monopolar (spherically symmetric) part of the norm of the magnetic field can be described by a single profile, that we fit by a simple eighth-order polynomial, as a function of the star's radius. This new generic profile applies remarkably well to all magnetized neutron star configurations built on hadronic equations of state. We then apply this profile to build magnetized neutron stars in spherical symmetry, using a modified Tolman-Oppenheimer-Volkov (TOV) system of equations. This new formalism produces slightly better results in terms of mass-radius diagrams than previous attempts to add magnetic terms to these equations. However, we show that such approaches are less accurate than usual, non-magnetized TOV models, and that consistent models must depart from spherical symmetry. Thus, our ``universal'' magnetic field profile is intended to serve as a tool for nuclear physicists to obtain estimates of magnetic field inside neutron stars, as a function of radial depth, in order to deduce its influence on composition and related properties. It possesses the advantage of being based on magnetic field distributions from realistic self-consistent computations, which are solutions of Maxwell's equations.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/1808.01778; hal-01853671; https://hal.science/hal-01853671; https://hal.science/hal-01853671v2/document; https://hal.science/hal-01853671v2/file/magprofile.pdf; ARXIV: 1808.01778
    • Accession Number:
      10.1103/PhysRevC.99.055811
    • Online Access:
      https://hal.science/hal-01853671
      https://hal.science/hal-01853671v2/document
      https://hal.science/hal-01853671v2/file/magprofile.pdf
      https://doi.org/10.1103/PhysRevC.99.055811
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.FC344DCA