Abstract: Beef fat injection technology, used to enhance the perceived quality of lower-grade meat, often results in artificially marbled beef that mimics the visual traits of Wagyu, characterized by dense fat distribution. This practice, driven by the high cost of Wagyu and the affordability of fat-injected beef, has led to the proliferation of mislabeled “Wagyu-grade” products sold at premium prices, posing potential food safety risks such as allergen exposure or consumption of unverified additives, which can adversely affect consumer health. Addressing this, this study introduces a smart sensing system integrated with handheld mobile devices, enabling consumers to capture beef images during purchase for real-time health-focused assessment. The system analyzes surface texture and color, transmitting data to a server for classification to determine if the beef is artificially marbled, thus supporting informed dietary choices and reducing health risks. Images are processed by applying a region of interest (ROI) mask to remove background noise, followed by partitioning into grid blocks. Local binary pattern (LBP) texture features and RGB color features are extracted from these blocks to characterize surface properties of three beef types (Wagyu, regular, and fat-injected). A support vector machine (SVM) model classifies the blocks, with the final image classification determined via majority voting. Experimental results reveal that the system achieves a recall rate of 95.00% for fat-injected beef, a misjudgment rate of 1.67% for non-fat-injected beef, a correct classification rate (CR) of 93.89%, and an F1-score of 95.80%, demonstrating its potential as a human-centered healthcare tool for ensuring food safety and transparency.
No Comments.