Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

DQe-v: A Database-Agnostic Framework for Exploring Variability in Electronic Health Record Data Across Time and Site Location

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Ubiquity Press, 2018.
    • Publication Date:
      2018
    • Abstract:
      Data variability is a commonly observed phenomenon in Electronic Health Records (EHR) data networks. A common question asked in scientific investigations of EHR data is whether the cross-site and -time variability reflects an underlying data quality error at one or more contributing sites versus actual differences driven by various idiosyncrasies in the healthcare settings. Although research analysts and data scientists have commonly used various statistical methods to detect and account for variability in analytic datasets, self service tools to facilitate exploring cross-organizational variability in EHR data warehouses are lacking and could benefit from meaningful data visualizations. DQe-v, an interactive, database-agnostic tool for visually exploring variability in EHR data provides such a solution. DQe-v is built on an open source platform, R statistical software, with annotated scripts and a readme document that makes it fully reproducible. To illustrate and describe functionality of DQe-v, we describe the DQe-v’s readme document which includes a complete guide to installation, running the program, and interpretation of the outputs. We also provide annotated R scripts and an example dataset as supplemental materials. DQe-v offers a self service tool to visually explore data variability within EHR datasets irrespective of the data model. GitHub and CIELO offer hosting and distribution of the tool and can facilitate collaboration across any interested community of users as we target improving usability, efficiency, and interoperability.
      Version of Record
    • File Description:
      application/pdf
    • Relation:
      http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994933/pdf/; eGEMs
    • Accession Number:
      10.13063/2327-9214.1277
    • Accession Number:
      edshld.1.37298414