Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Prediction of Readmission Following Sepsis Using Social Determinants of Health.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      eScholarship, University of California, 2024.
    • Publication Date:
      2024
    • Abstract:
      OBJECTIVES: To determine the predictive value of social determinants of health (SDoH) variables on 30-day readmission following a sepsis hospitalization as compared with traditional clinical variables. DESIGN: Multicenter retrospective cohort study using patient-level data, including demographic, clinical, and survey data. SETTINGS: Thirty-five hospitals across the United States from 2017 to 2021. PATIENTS: Two hundred seventy-one thousand four hundred twenty-eight individuals in the AllofUs initiative, of which 8909 had an index sepsis hospitalization. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Unplanned 30-day readmission to the hospital. Multinomial logistic regression models were constructed to account for survival in determination of variables associate with 30-day readmission and are presented as adjusted odds rations (aORs). Of the 8909 sepsis patients in our cohort, 21% had an unplanned hospital readmission within 30 days. Median age (interquartile range) was 54 years (41-65 yr), 4762 (53.4%) were female, and there were self-reported 1612 (18.09%) Black, 2271 (25.49%) Hispanic, and 4642 (52.1%) White individuals. In multinomial logistic regression models accounting for survival, we identified that change to nonphysician provider type due to economic reasons (aOR, 2.55 [2.35-2.74]), delay of receiving medical care due to lack of transportation (aOR, 1.68 [1.62-1.74]), and inability to afford flow-up care (aOR, 1.59 [1.52-1.66]) were strongly and independently associated with a 30-day readmission when adjusting for survival. Patients who lived in a ZIP code with a high percentage of patients in poverty and without health insurance were also more likely to be readmitted within 30 days (aOR, 1.26 [1.22-1.29] and aOR, 1.28 [1.26-1.29], respectively). Finally, we found that having a primary care provider and health insurance were associated with low odds of an unplanned 30-day readmission. CONCLUSIONS: In this multicenter retrospective cohort, several SDoH variables were strongly associated with unplanned 30-day readmission. Models predicting readmission following sepsis hospitalization may benefit from the addition of SDoH factors to traditional clinical variables.
    • File Description:
      application/pdf
    • Accession Number:
      10.1097/CCE.0000000000001099
    • Accession Number:
      edssch.oai:escholarship.org:ark:/13030/qt2kq258tg