Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Bacteriome depiction and the trophic status of the largest Northern highland lake from Andes system: Lago de Tota, Boyacá, Colombia.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0410427 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-072X (Electronic) Linking ISSN: 03028933 NLM ISO Abbreviation: Arch Microbiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin, New York, Springer-Verlag.
    • Subject Terms:
    • Abstract:
      Lago de Tota is the largest highland lake in Colombia and one of the most remarkable of Northern Andean Mountain range. This lake is under an anthropogenic-based eutrophication process as a consequence of non-sustainable agriculture practices developing nearby. Notable relationship between the trophic status and Bacteriome loop dynamics has been increasingly disclosed in lakes worldwide. We performed a 16S sequencing analysis to depict the bacterial community present and we inferred its potential gene function in Lago de Tota. Parameters for determining current trophic condition such as total nitrogen (TN), dissolved carbon (DOC), particulate organic matter (POM), and chlorophyll-a (chl-a) were measured. A total of 440 Operational Taxonomic Units (OTUs) arranged into 50 classes were identified based on V3-V4 regions of the 16S rRNA gene, harboring high-frequent likely found environmental classes such as Actinobacteria, Gammaproteobacteria, Bacteroidia, Acidimicrobia, and Verrucomicrobiae. A total of 26 bacterial classes configure most abundant predicted functional processes involved in organic matter decomposition (i.e., carbohydrate metabolism, amino acid metabolism, xenobiotic biodegradation, and energy metabolism). In general, Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria show the highest potential gene functional contributors, although other low-frequent classes OTUs are also relevant in processes of carbohydrate metabolism, xenobiotic biodegradation, and energy metabolism. The Trophic State Index indicates an oligo-mesotrophic status, and additional variables measured (i.e., POM, DOC) suggest the increasing carbon accumulation. Results provide preliminary evidence for several bacteria groups related to eutrophication of Lago de Tota. Under this picture, we suggest that further studies for Bacteriome loop spatial-temporal description are essential to inform local water quality monitoring strategies.
      (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Aguilar P, Dorador C, Vila I et al (2018) Bacterioplankton composition in tropical high-elevation lakes of the Andean plateau. FEMS Microbiol Ecol 94:fiy004. https://doi.org/10.1093/femsec/fiy004. (PMID: 10.1093/femsec/fiy0046018938)
      Aminot A, Rey F (2001) Chlorophyll a: determination by spectroscopic methods. ICES Techniqnes in Marine Environmental Sciences, No. 30, pp 1–17. https://doi.org/10.25607/OBP-278.
      Aranguren-Riaño NJ, Shurin JB, Pedroza-Ramos A et al (2018) Sources of nutrients behind recent eutrophication of Lago de Tota, a high mountain Andean lake. Aquat Sci 80:39. https://doi.org/10.1007/s00027-018-0588-x. (PMID: 10.1007/s00027-018-0588-x)
      Baron JS, Poff NL, Angermeier PL et al (2004) Sustaining healthy freshwater ecosystems. Water Resour Update 127:52–58. https://pubs.er.usgs.gov/publication/1015304.
      Cáceres Y, Llambí LD, Rada F (2015) Shrubs as foundation species in a high tropical alpine ecosystem: a multi-scale analysis of plant spatial interactions. Plant Ecol Divers 8:147–161. https://doi.org/10.1080/17550874.2014.960173. (PMID: 10.1080/17550874.2014.960173)
      Caporaso J, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303. (PMID: 10.1038/nmeth.f.3032038313120383131)
      Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr. https://doi.org/10.4319/lo.1977.22.2.0361. (PMID: 10.4319/lo.1977.22.2.0361)
      Catalan J, Donato Rondón JC (2016) Perspectives for an integrated understanding of tropical and temperate high-mountain lakes. J Limnol. https://doi.org/10.4081/jlimnol.2016.1372. (PMID: 10.4081/jlimnol.2016.1372)
      DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/aem.03006-05. (PMID: 10.1128/aem.03006-05168205071489311)
      Donato Rondón JC (2010) Phytoplankton of Andean Lakes in Northern Southamerica (Colombia): composition and environment distribution factors. A.R.G. Gantner Verlag, Ruggell, Liechtenstein.
      Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461. (PMID: 10.1093/bioinformatics/btq46120709691)
      Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381. (PMID: 10.1093/bioinformatics/btr381217006743150044)
      Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–1039. https://doi.org/10.1126/science.1153213. (PMID: 10.1126/science.115321318497287)
      Feng C, Jia J, Wang C et al (2019) Phytoplankton and bacterial community structure in two chinese kakes of different trophic status. Microorganisms 7:621. https://doi.org/10.3390/microorganisms7120621. (PMID: 10.3390/microorganisms71206216956004)
      Fennell DE, Du S, Liu F et al (2011) Dehalogenation of polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, and brominated flame retardants, and potential as a bioremediation strategy. In: Comprehensive Biotechnology, pp 143–157. Elsevier. https://doi.org/10.1016/B978-0-444-64046-8.00487-0.
      Fierer N, Leff JW, Adams BJ et al (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. PNAS 109:21390–21395. https://doi.org/10.1073/pnas.1215210110. (PMID: 10.1073/pnas.1215210110232361403535587)
      Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459:193–199. https://doi.org/10.1038/nature08058. (PMID: 10.1038/nature0805819444205)
      Hanson CA, Fuhrman JA, Horner-Devine MC et al (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506. https://doi.org/10.1038/nrmicro2795. (PMID: 10.1038/nrmicro279522580365)
      Hassan M, Essam T, Megahed S (2018) Illumina sequencing and assessment of new cost-efficient protocol for metagenomic-DNA extraction from environmental water samples. Braz J Microbiol. https://doi.org/10.1016/j.bjm.2018.03.002. (PMID: 10.1016/j.bjm.2018.03.002301662676328899)
      Hengy MH, Horton DJ, Uzarski DG et al (2017) Microbial community diversity patterns are related to physical and chemical differences among temperate lakes near Beaver Island, MI. PeerJ. https://doi.org/10.7717/peerj.3937. (PMID: 10.7717/peerj.3937290626095647861)
      Huang Q, Briggs BR, Dong H et al (2014) Taxonomic and functional diversity provides insight into microbial pathways and stress responses in the saline Qinghai Lake, China. PLoS ONE 9(12):e116444. https://doi.org/10.1371/journal.pone.0116444. (PMID: 10.1371/journal.pone.0116444)
      Huang X, Hu B, Wang P et al (2016) Microbial diversity in lake–river ecotone of Poyang Lake, China. Environ Earth Sci 75:965–965. https://doi.org/10.1007/s12665-016-5473-0. (PMID: 10.1007/s12665-016-5473-0)
      Jiang Y, Huang H, Ma T et al (2019) Temperature response of planktonic microbiota in remote Alpine lakes. Front Microbiol 10:1714–1714. https://doi.org/10.3389/fmicb.2019.01714. (PMID: 10.3389/fmicb.2019.01714314175136685043)
      Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. In: Bioinformatics for DNA sequence analysis. Springer, pp 39–64. https://doi.org/10.1007/978-1-59745-251-9_3.
      Kiersztyn B, Chróst R, Kaliński T et al (2019) Structural and functional microbial diversity along a eutrophication gradient of interconnected lakes undergoing anthropopressure. Sci Rep 9:11144–11144. https://doi.org/10.1038/s41598-019-47577-8. (PMID: 10.1038/s41598-019-47577-8313669936668414)
      Klindworth A, Pruesse E, Schweer T et al (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. https://doi.org/10.1093/nar/gks808. (PMID: 10.1093/nar/gks80822933715)
      Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676. (PMID: 10.1038/nbt.26762397515723975157)
      Lennon JT, Locey KJ (2016) The underestimation of global microbial diversity. MBio 7:e01298-e11216. https://doi.org/10.1128/mBio.01298-16. (PMID: 10.1128/mBio.01298-16276777945050337)
      Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346. https://doi.org/10.4319/lo.1967.12.2.0343. (PMID: 10.4319/lo.1967.12.2.0343)
      Másmela-Mendoza JE, Lizarazo LM, Riaño NJA (2019) Bacterias nitrificantes cultivables de la zona limnética del lago de Tota, Boyacá. Revista UDCA Actualidad & Divulgación Científica. https://doi.org/10.31910/rudca.v22.n2.2019.1378.
      Miller IJ, Rees ER, Ross J et al (2019) Autometa: automated extraction of microbial genomes from individual shotgun metagenomes. Nucleic Acids Res 47:e57–e57. https://doi.org/10.1093/nar/gkz148. (PMID: 10.1093/nar/gkz148308384166547426)
      Moser KA, Baron JS, Brahney J et al (2019) Mountain lakes: Eyes on global environmental change. Glob Planet Change 178:77–95. https://doi.org/10.1016/j.gloplacha.2019.04.001. (PMID: 10.1016/j.gloplacha.2019.04.001)
      Mouillot D, Graham NAJ, Villéger S et al (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177. https://doi.org/10.1016/j.tree.2012.10.004. (PMID: 10.1016/j.tree.2012.10.00423141923)
      Ng C, Tan B, Jiang XT et al (2019) Metagenomic and resistome analysis of a full-acale municipal wastewater treatment plant in Singapore containing membrane bioreactors. Front Microbiol 10:172–172. https://doi.org/10.3389/fmicb.2019.00172. (PMID: 10.3389/fmicb.2019.00172308339346387931)
      Paver SF, Newton RJ, Coleman ML (2020) Microbial communities of the Laurentian Great Lakes reflect connectivity and local biogeochemistry. Environ Microbiol 22:433–446. https://doi.org/10.1111/1462-2920.14862. (PMID: 10.1111/1462-2920.1486231736217)
      Pawlowski J, Kelly-Quinn M, Altermatt F et al (2018) The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Sci Total Environ 637–638:1295–1310. https://doi.org/10.1016/j.scitotenv.2018.05.002. (PMID: 10.1016/j.scitotenv.2018.05.00229801222)
      Peter H, Sommaruga R (2016) Shifts in diversity and function of lake bacterial communities upon glacier retreat. ISME J 10:1545–1554. https://doi.org/10.1038/ismej.2015.245. (PMID: 10.1038/ismej.2015.245267719294852812)
      Picazo A, Rochera C, Villaescusa JA et al (2019) Bacterioplankton community composition along environmental gradients in lakes from Byers Peninsula (maritime Antarctica) as determined by Next-Generation Sequencing. Front Microbiol 10:908–908. https://doi.org/10.3389/fmicb.2019.00908. (PMID: 10.3389/fmicb.2019.00908311145586503055)
      Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3):e9490. https://doi.org/10.1371/journal.pone.0009490. (PMID: 10.1371/journal.pone.0009490202248232835736)
      Reed HE, Martiny JBH (2013) Microbial composition affects the functioning of estuarine sediments. ISME J 7:868–868. https://doi.org/10.1038/ismej.2012.154. (PMID: 10.1038/ismej.2012.15423235294)
      Ren Z, Wang F, Qu X et al (2017) Taxonomic and functional differences between microbial communities in Qinghai Lake and its input streams. Front Microbiol 8:2319. https://doi.org/10.3389/fmicb.2017.02319. (PMID: 10.3389/fmicb.2017.02319292132665702853)
      Röling WFM, Van Breukelen BM, Bruggeman FJ et al (2007) Ecological control analysis: being (s) in control of mass flux and metabolite concentrations in anaerobic degradation processes. Environ Microbiol 9:500–511. https://doi.org/10.1111/j.1462-2920.2006.01167.x. (PMID: 10.1111/j.1462-2920.2006.01167.x17222148)
      Shen M, Li Q, Ren M et al (2019) Trophic status is associated with community structure and metabolic potential of planktonic microbiota in plateau lakes. Front Microbiol 10:2560–2560. https://doi.org/10.3389/fmicb.2019.02560. (PMID: 10.3389/fmicb.2019.02560317879526853845)
      Symons CC, Schulhof MA, Cavalheri HB et al (2019) Antagonistic effects of temperature and dissolved organic carbon on fish growth in California mountain lakes. Oecologia 189:231–241. https://doi.org/10.1007/s00442-018-4298-9. (PMID: 10.1007/s00442-018-4298-930426209)
      Toledo Jr APd, Talarico M, Chinez SJ, Agudo EG (1983) A aplicação de modelos simplificados para a avaliação do processo da eutrofização em lagos e reservatórios tropicais. Anais do 12 Congresso Brasileiro de Engenharia Sanitária e Ambiental, Santa Catarina, Brazil, pp 1–34.
      Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. PNAS 95:6578–6583. https://doi.org/10.1073/pnas.95.12.6578. (PMID: 10.1073/pnas.95.12.6578961845433863)
      Wickham H (2011) ggplot2. Wiley Interdiscip Rev Comput Stat 3:180–185. https://doi.org/10.1002/wics.147. (PMID: 10.1002/wics.147)
    • Contributed Indexing:
      Keywords: Bacteria; Colombia; Functional prediction; Lago de Tota; Metataxonomic; Trophic status
    • Accession Number:
      0 (RNA, Ribosomal, 16S)
    • Publication Date:
      Date Created: 20210512 Date Completed: 20210728 Latest Revision: 20210728
    • Publication Date:
      20231215
    • Accession Number:
      10.1007/s00203-021-02341-3
    • Accession Number:
      33978771