Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

An updated review and current challenges of Guanarito virus infection, Venezuelan hemorrhagic fever.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 7506870 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-8798 (Electronic) Linking ISSN: 03048608 NLM ISO Abbreviation: Arch Virol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Wien, New York, Springer-Verlag.
    • Subject Terms:
    • Abstract:
      Guanarito virus (GTOV) is a member of the family Arenaviridae and has been designated a category A bioterrorism agent by the US Centers for Disease Control and Prevention. It is endemic to Venezuela's western region, and it is the etiological agent of "Venezuelan hemorrhagic fever" (VHF). Similar to other arenaviral hemorrhagic fevers, VHF is characterized by fever, mild hemorrhagic signs, nonspecific symptoms, thrombocytopenia, and leukopenia. Patients with severe disease usually develop signs of internal bleeding. Due to the absence of reference laboratories that can handle GTOV in endemic areas, diagnosis is primarily clinical and epidemiological. No antiviral therapies are available; thus, treatment includes only supportive analgesia and fluids. GTOV is transmitted by contact with the excreta of its rodent reservoir, Zygodontomys brevicauda. The main reasons for the emergence of the disease may be the increase in the human population, migration, and changes in land use patterns in rural areas. Social and environmental changes could make VHF an important cause of underdiagnosed acute febrile illnesses in regions near the endemic areas. Although there is evidence that GTOV circulates among rodents in different Venezuelan states, VHF cases have only been reported in the states of Portuguesa and Barinas. However, due to the increased frequency of invasions by humans into wildlife habitats, it is probable that VHF could become a public health problem in the nearby regions of Colombia and Brazil. The current Venezuelan political crisis is causing an increase in the migration of people and livestock, representing a risk for the redistribution and re-emergence of infectious diseases.
      (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
    • References:
      Radoshitzky SR, Buchmeier MJ, Charrel RN, Clegg JCS, Gonzalez JJ, Günther S, Hepojoki J, Kuhn JH, Lukashevich IS, Romanowski V, Salvato MS, Sironi M, Stenglein MD, de la Torre JC (2019) ICTV Report Consortium. ICTV virus taxonomy profile: Arenaviridae. J Gen Virol 100(8):1200–1201. https://doi.org/10.1099/jgv.0.001280. (PMID: 10.1099/jgv.0.00128031192784)
      Hallam SJ, Koma T, Maruyama J, Paessler S (2018) Review of mammarenavirus biology and replication. Front Microbiol 9:1751. https://doi.org/10.3389/fmicb.2018.01751. (PMID: 10.3389/fmicb.2018.01751301231986085440)
      Frank MG, Beitscher A, Webb CM, Raabe V, members of the Medical Countermeasures Working Group of the National Emerging Special Pathogens Training and Education Center’s (NETEC’s) Special Pathogens Research Network (SPRN) (2021) South American hemorrhagic fevers: a summary for clinicians. Int J Infect Dis 105:505–515. https://doi.org/10.1016/j.ijid.2021.02.046. (PMID: 10.1016/j.ijid.2021.02.04633610781)
      Salas R, de Manzione N, Tesh RB, Rico-Hesse R, Shope RE, Betancourt A, Godoy O, Bruzual R, Pacheco ME, Ramos B, Taibo ME, Garcia Tamayo J, Jaimes E, Vasquez C, Araoz F, Querales J (1991) Venezuelan haemorrhagic fever. Lancet 338(8774):1033–1036. https://doi.org/10.1016/0140-6736(91)91899-6. (PMID: 10.1016/0140-6736(91)91899-61681354)
      Bowen MD, Peters CJ, Nichol ST (1996) The phylogeny of New World (Tacaribe complex) arenaviruses. Virology 219(1):285–290. https://doi.org/10.1006/viro.1996.0248. (PMID: 10.1006/viro.1996.02488623541)
      Gonzalez JP, Sanchez A, Rico-Hesse R (1995) Molecular phylogeny of Guanarito virus, an emerging arenavirus affecting humans. Am J Trop Med Hyg 53(1):1–6. (PMID: 10.4269/ajtmh.1995.53.1)
      Fulhorst CE, Bowen MD, Salas RA, de Manzione NM, Duno G, Utrera A, Ksiazek TG, Peters CJ, Nichol ST, De Miller E, Tovar D, Ramos B, Vasquez C, Tesh RB (1997) Isolation and characterization of pirital virus, a newly discovered South American arenavirus. Am J Trop Med Hyg 56(5):548–553. https://doi.org/10.4269/ajtmh.1997.56.548. (PMID: 10.4269/ajtmh.1997.56.5489180606)
      Milazzo ML, Cajimat MN, Duno G, Duno F, Utrera A, Fulhorst CF (2011) Transmission of Guanarito and Pirital viruses among wild rodents, Venezuela. Emerg Infect Dis 17(12):2209–2215. https://doi.org/10.3201/eid1712.110393. (PMID: 10.3201/eid1712.110393221722053311192)
      Fulhorst CF, Bowen MD, Salas RA, Duno G, Utrera A, Ksiazek TG, De Manzione NM, De Miller E, Vasquez C, Peters CJ, Tesh RB (1999) Natural rodent host associations of Guanarito and pirital viruses (Family Arenaviridae) in central Venezuela. Am J Trop Med Hyg 61(2):325–330. https://doi.org/10.4269/ajtmh.1999.61.325. (PMID: 10.4269/ajtmh.1999.61.32510463688)
      Tesh RB (2002) Viral hemorrhagic fevers of South America. Biomedica 22(3):287–295. (PMID: 10.7705/biomedica.v22i3.1166)
      Lindahl JF, Grace D (2015) The consequences of human actions on risks for infectious diseases: a review. Infect Ecol Epidemiol 5:30048. https://doi.org/10.3402/iee.v5.30048. (PMID: 10.3402/iee.v5.3004826615822)
      Tuite AR, Thomas-Bachli A, Acosta H, Bhatia D, Huber C, Petrasek K, Watts A, Yong JHE, Bogoch II, Khan K (2018) Infectious disease implications of large-scale migration of Venezuelan nationals. J Travel Med 25(1):tay077. https://doi.org/10.1093/jtm/tay077. (PMID: 10.1093/jtm/tay0776142906)
      de Manzione N, Salas RA, Paredes H, Godoy O, Rojas L, Araoz F, Fulhorst CF, Ksiazek TG, Mills JN, Ellis BA, Peters CJ, Tesh RB (1998) Venezuelan hemorrhagic fever: clinical and epidemiological studies of 165 cases. Clin Infect Dis 26(2):308–313. https://doi.org/10.1086/516299. (PMID: 10.1086/5162999502447)
      Weaver SC, Salas RA, de Manzione N, Fulhorst CF, Duno G, Utrera A, Mills JN, Ksiazek TG, Tovar D, Tesh RB (2000) Guanarito virus (Arenaviridae) isolates from endemic and outlying localities in Venezuela: sequence comparisons among and within strains isolated from Venezuelan hemorrhagic fever patients and rodents. Virology 266(1):189–195. https://doi.org/10.1006/viro.1999.0067. (PMID: 10.1006/viro.1999.006710612673)
      Fulhorst CF, Cajimat MN, Milazzo ML, Paredes H, de Manzione NM, Salas RA, Rollin PE, Ksiazek TG (2008) Genetic diversity between and within the arenavirus species indigenous to western Venezuela. Virology 378(2):205–213. https://doi.org/10.1016/j.virol.2008.05.014. (PMID: 10.1016/j.virol.2008.05.01418586298)
      Tesh RB, Wilson ML, Salas R, De Manzione NM, Tovar D, Ksiazek TG, Peters CJ (1993) Field studies on the epidemiology of Venezuelan hemorrhagic fever: implication of the cotton rat Sigmodon alstoni as the probable rodent reservoir. Am J Trop Med Hyg 49(2):227–235. https://doi.org/10.4269/ajtmh.1993.49.227. (PMID: 10.4269/ajtmh.1993.49.2278395143)
      Rodríguez-Morales AJ, Bonilla-Aldana DK, Risquez A, Paniz-Mondolfi A, Suárez JA (2021) Should we be concerned about Venezuelan hemorrhagic fever?—A reflection on its current situation in Venezuela and potential impact in Latin America amid the migration crisis. New Microbes New 44:100945. https://doi.org/10.1016/j.nmni.2021.100945. (PMID: 10.1016/j.nmni.2021.100945)
      Parsy ML, Harlos K, Huiskonen JT, Bowden TA (2013) Crystal structure of Venezuelan hemorrhagic fever virus fusion glycoprotein reveals a class 1 postfusion architecture with extensive glycosylation. J Virol 87(23):13070–13075. https://doi.org/10.1128/JVI.02298-13. (PMID: 10.1128/JVI.02298-13240491823838125)
      Hall WC, Geisbert TW, Huggins JW, Jahrling PB (1996) Experimental infection of guinea pigs with Venezuelan hemorrhagic fever virus (Guanarito): a model of human disease. Am J Trop Med Hyg 55(1):81–88. https://doi.org/10.4269/ajtmh.1996.55.81. (PMID: 10.4269/ajtmh.1996.55.818702027)
      Fulhorst CF, Ksiazek TG, Peters CJ, Tesh RB (1999) Experimental infection of the cane mouse Zygodontomys brevicauda (family Muridae) with guanarito virus (Arenaviridae), the etiologic agent of Venezuelan hemorrhagic fever. J Infect Dis 180(4):966–969. https://doi.org/10.1086/315029. (PMID: 10.1086/31502910479119)
      Cajimat MN, Fulhorst CF (2004) Phylogeny of the Venezuelan arenaviruses. Virus Res 102(2):199–206. https://doi.org/10.1016/j.virusres.2004.01.032. (PMID: 10.1016/j.virusres.2004.01.03215084402)
      Tesh RB, Jahrling PB, Salas R, Shope RE (1994) Description of Guanarito virus (Arenaviridae: Arenavirus), the etiologic agent of Venezuelan hemorrhagic fever. Am J Trop Med Hyg 50(4):452–459. https://doi.org/10.4269/ajtmh.1994.50.452. (PMID: 10.4269/ajtmh.1994.50.4528166352)
      Spiropoulou CF, Kunz S, Rollin PE, Campbell KP, Oldstone MB (2002) New World arenavirus clade C, but not clade A and B viruses, utilizes alpha-dystroglycan as its major receptor. J Virol 76(10):5140–5146. https://doi.org/10.1128/jvi.76.10.5140-5146.2002. (PMID: 10.1128/jvi.76.10.5140-5146.200211967329136162)
      Grant A, Seregin A, Huang C, Kolokoltsova O, Brasier A, Peters C, Paessler S (2012) Junín virus pathogenesis and virus replication. Viruses 4(10):2317–2339. https://doi.org/10.3390/v4102317. (PMID: 10.3390/v4102317232024663497054)
      Patterson M, Grant A, Paessler S (2014) Epidemiology and pathogenesis of Bolivian hemorrhagic fever. Curr Opin Virol 5:82–90. https://doi.org/10.1016/j.coviro.2014.02.007. (PMID: 10.1016/j.coviro.2014.02.00724636947)
      Rojek JM, Spiropoulou CF, Kunz S (2006) Characterization of the cellular receptors for the South American hemorrhagic fever viruses Junin, Guanarito, and Machupo. Virology 349(2):476–491. https://doi.org/10.1016/j.virol.2006.02.033. (PMID: 10.1016/j.virol.2006.02.03316574183)
      Martin VK, Droniou-Bonzom ME, Reignier T, Oldenburg JE, Cox AU, Cannon PM (2010) Investigation of clade B New World arenavirus tropism by using chimeric GP1 proteins. J Virol 84(2):1176–1182. https://doi.org/10.1128/JVI.01625-09. (PMID: 10.1128/JVI.01625-0919889757)
      Shao J, Liang Y, Ly H (2015) Human hemorrhagic fever causing arenaviruses: molecular mechanisms contributing to virus virulence and disease pathogenesis. Pathogens 4(2):283–306. https://doi.org/10.3390/pathogens4020283. (PMID: 10.3390/pathogens4020283260118264493475)
      Radoshitzky SR, Kuhn JH, Spiropoulou CF, Albariño CG, Nguyen DP, Salazar-Bravo J, Dorfman T, Lee AS, Wang E, Ross SR, Choe H, Farzan M (2008) Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proc Natl Acad Sci USA 105(7):2664–2669. https://doi.org/10.1073/pnas.0709254105. (PMID: 10.1073/pnas.0709254105182683372268193)
      Perez M, Craven RC, de la Torre JC (2003) The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci USA 100(22):12978–12983. https://doi.org/10.1073/pnas.2133782100. (PMID: 10.1073/pnas.213378210014563923240730)
      Casabona JC, Levingston Macleod JM, Loureiro ME, Gomez GA, Lopez N (2009) The RING domain and the L79 residue of Z protein are involved in both the rescue of nucleocapsids and the incorporation of glycoproteins into infectious chimeric arenavirus-like particles. J Virol 83(14):7029–7039. https://doi.org/10.1128/JVI.00329-09. (PMID: 10.1128/JVI.00329-09194200752704760)
      Urata S, Yasuda J, de la Torre JC (2009) The z protein of the new world arenavirus tacaribe virus has bona fide budding activity that does not depend on known late domain motifs. J Virol 83(23):12651–12655. https://doi.org/10.1128/JVI.01012-09. (PMID: 10.1128/JVI.01012-09197591562786714)
      Eichler R, Strecker T, Kolesnikova L, ter Meulen J, Weissenhorn W, Becker S, Klenk HD, Garten W, Lenz O (2004) Characterization of the Lassa virus matrix protein Z: electron microscopic study of virus-like particles and interaction with the nucleoprotein (NP). Virus Res 100(2):249–255. https://doi.org/10.1016/j.virusres.2003.11.017. (PMID: 10.1016/j.virusres.2003.11.01715019244)
      Rojek JM, Lee AM, Nguyen N, Spiropoulou CF, Kunz S (2008) Site 1 protease is required for proteolytic processing of the glycoproteins of the South American hemorrhagic fever viruses Junin, Machupo, and Guanarito. J Virol 82(12):6045–6051. https://doi.org/10.1128/JVI.02392-07. (PMID: 10.1128/JVI.02392-07184008652395157)
      Fan L, Briese T, Lipkin WI (2010) Z proteins of New World arenaviruses bind RIG-I and interfere with type I interferon induction. J Virol 84(4):1785–1791. https://doi.org/10.1128/JVI.01362-09. (PMID: 10.1128/JVI.01362-0920007272)
      Xing J, Ly H, Liang Y (2015) The Z proteins of pathogenic but not nonpathogenic arenaviruses inhibit RIG-I-like receptor-dependent interferon production. J Virol 89(5):2944–2955. https://doi.org/10.1128/JVI.03349-14. (PMID: 10.1128/JVI.03349-1425552708)
      Martínez-Sobrido L, Emonet S, Giannakas P, Cubitt B, García-Sastre A, de la Torre JC (2009) Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 83(21):11330–11340. https://doi.org/10.1128/JVI.00763-09. (PMID: 10.1128/JVI.00763-09197101442772779)
      Zhirnov IV, Ryabinin VA, Sinyakov AN, Ternovoy VA, Shikov AN (2015) A prototype of oligonucleotide microarray for detection of pathogens relating to arena- and Filoviridae families. Bioorg Khim 41(1):54–66. https://doi.org/10.1134/s1068162014050136. (PMID: 10.1134/s106816201405013626050472)
      Leland DS, Ginocchio CC (2007) Role of cell culture for virus detection in the age of technology. Clin Microbiol Rev 20(1):49–78. https://doi.org/10.1128/CMR.00002-06. (PMID: 10.1128/CMR.00002-06172236231797634)
      Fukushi S, Tani H, Yoshikawa T, Saijo M, Morikawa S (2012) Serological assays based on recombinant viral proteins for the diagnosis of arenavirus hemorrhagic fevers. Viruses 4(10):2097–2114. https://doi.org/10.3390/v4102097. (PMID: 10.3390/v4102097232024553497043)
      Ure AE, Ghiringhelli PD, Possee RD, Morikawa S, Romanowski V (2008) Argentine hemorrhagic fever diagnostic test based on recombinant Junín virus N protein. J Med Virol 80(12):2127–2133. https://doi.org/10.1002/jmv.21265. (PMID: 10.1002/jmv.2126519040289)
      Fajfr M, Neubauerová V, Pajer P, Kubíčková P, Růžek D (2014) Detection panel for identification of twelve hemorrhagic viruses using real-time RT-PCR. Epidemiol Mikrobiol Imunol 63(3):238–244. (PMID: 25412490)
      Pang Z, Li A, Li J, Qu J, He C, Zhang S, Li C, Zhang Q, Liang M, Li D (2014) Comprehensive multiplex one-step real-time TaqMan qRT-PCR assays for detection and quantification of hemorrhagic fever viruses. PLoS One 9(4):e95635. https://doi.org/10.1371/journal.pone.0095635. (PMID: 10.1371/journal.pone.0095635247524523994070)
      Trombley AR, Wachter L, Garrison J, Buckley-Beason VA, Jahrling J, Hensley LE, Schoepp RJ, Norwood DA, Goba A, Fair JN, Kulesh DA (2010) Comprehensive panel of real-time TaqMan polymerase chain reaction assays for detection and absolute quantification of filoviruses, arenaviruses, and New World hantaviruses. Am J Trop Med Hyg 82(5):954–960. https://doi.org/10.4269/ajtmh.2010.09-0636. (PMID: 10.4269/ajtmh.2010.09-0636204399812861391)
      Golden JW, Maes P, Kwilas SA, Ballantyne J, Hooper JW (2016) Glycoprotein-specific antibodies produced by DNA vaccination protect Guinea pigs from lethal Argentine and Venezuelan hemorrhagic fever. J Virol 90(7):3515–3529. https://doi.org/10.1128/JVI.02969-15. (PMID: 10.1128/JVI.02969-15267927374794662)
      Mendenhall M, Russell A, Juelich T, Messina EL, Smee DF, Freiberg AN, Holbrook MR, Furuta Y, de la Torre JC, Nunberg JH, Gowen BB (2011) T-705 (favipiravir) inhibition of arenavirus replication in cell culture. Antimicrob Agents Chemother 55(2):782–787. https://doi.org/10.1128/AAC.01219-10. (PMID: 10.1128/AAC.01219-1021115797)
      Pasquato A, Rochat C, de la Torre JC, Kunz S (2011) Combinatorial anti-arenaviral therapy with the small molecule ski-1/s1p inhibitor pf-429242 and ribavirin. Antiviral Res 90(2):A62. https://doi.org/10.1016/j.antiviral.2011.03.122. (PMID: 10.1016/j.antiviral.2011.03.122)
      Rosenke K, Feldmann H, Westover JB, Hanley PW, Martellaro C, Feldmann F, Saturday G, Lovaglio J, Scott DP, Furuta Y, Komeno T, Gowen BB, Safronetz D (2018) Use of favipiravir to treat Lassa virus infection in Macaques. Emerg Infect Dis 24(9):1696–1699. https://doi.org/10.3201/eid2409.180233. (PMID: 10.3201/eid2409.180233298827406106425)
      Veliziotis I, Roman A, Martiny D, Schuldt G, Claus M, Dauby N, Van den Wijngaert S, Martin C, Nasreddine R, Perandones C, Mahieu R, Swaan C, Van Praet S, Konopnicki D, Morales MA, Malvy D, Stevens E, Dechamps P, Vlieghe E, Vandenberg O, Günther S, Gérard M (2020) Clinical management of Argentine hemorrhagic fever using ribavirin and favipiravir, Belgium, 2020. Emerg Infect Dis 26(7):1562–1566. https://doi.org/10.3201/eid2607.200275. (PMID: 10.3201/eid2607.200275322717017323566)
      Gehring G, Rohrmann K, Atenchong N, Mittler E, Becker S, Dahlmann F, Pöhlmann S, Vondran FW, David S, Manns MP, Ciesek S, von Hahn T (2014) The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry. J Antimicrob Chemother 69(8):2123–2131. https://doi.org/10.1093/jac/dku091. (PMID: 10.1093/jac/dku09124710028)
      Radoshitzky SR, Kuhn JH, de Kok-Mercado F, Jahrling PB, Bavari S (2012) Drug discovery technologies and strategies for Machupo virus and other New World arenaviruses. Expert Opin Drug Discov 7(7):613–632. https://doi.org/10.1517/17460441.2012.687719. (PMID: 10.1517/17460441.2012.687719226074813426302)
      Helguera G, Jemielity S, Abraham J, Cordo SM, Martinez MG, Rodríguez JA, Bregni C, Wang JJ, Farzan M, Penichet ML, Candurra NA, Choe H (2012) An antibody recognizing the apical domain of human transferrin receptor 1 efficiently inhibits the entry of all new world hemorrhagic fever arenaviruses. J Virol 86(7):4024–4028. https://doi.org/10.1128/JVI.06397-11. (PMID: 10.1128/JVI.06397-11222782443302512)
      Lee AM, Rojek JM, Spiropoulou CF, Gundersen AT, Jin W, Shaginian A, York J, Nunberg JH, Boger DL, Oldstone MB, Kunz S (2008) Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses. J Biol Chem 283(27):18734–18742. https://doi.org/10.1074/jbc.M802089200. (PMID: 10.1074/jbc.M802089200184745962441566)
      Janosko K, Holbrook MR, Adams R, Barr J, Bollinger L, Newton JT, Ntiforo C, Coe L, Wada J, Pusl D, Jahrling PB, Kuhn JH, Lackemeyer MG (2016) Safety precautions and operating procedures in an (A)BSL-4 Laboratory: 1. Biosafety level 4 suit laboratory suite entry and exit procedures. J Vis Exp 116:52317. https://doi.org/10.3791/52317. (PMID: 10.3791/52317)
      Noad RJ, Simpson K, Fooks AR, Hewson R, Gilbert SC, Stevens MP, Hosie MJ, Prior J, Kinsey AM, Entrican G, Simpson A, Whitty CJM, Carroll MW (2019) UK vaccines network: mapping priority pathogens of epidemic potential and vaccine pipeline developments. Vaccine 37(43):6241–6247. https://doi.org/10.1016/j.vaccine.2019.09.009. (PMID: 10.1016/j.vaccine.2019.09.009315228097127063)
      Azim KF, Lasker T, Akter R, Hia MM, Bhuiyan OF, Hasan M, Hossain MN (2021) Combination of highly antigenic nucleoproteins to inaugurate a cross-reactive next generation vaccine candidate against Arenaviridae family. Heliyon 7(5):e07022. https://doi.org/10.1016/j.heliyon.2021.e07022. (PMID: 10.1016/j.heliyon.2021.e07022340413918144012)
      Clark LE, Mahmutovic S, Raymond DD, Dilanyan T, Koma T, Manning JT, Shankar S, Levis SC, Briggiler AM, Enria DA, Wucherpfennig KW, Paessler S, Abraham J (2018) Vaccine-elicited receptor-binding site antibodies neutralize two New World hemorrhagic fever arenaviruses. Nat Commun 9(1):1884. https://doi.org/10.1038/s41467-018-04271-z. (PMID: 10.1038/s41467-018-04271-z297603825951886)
      Koma T, Patterson M, Huang C, Seregin AV, Maharaj PD, Miller M, Smith JN, Walker AG, Hallam S, Paessler S (2015) Machupo virus expressing GPC of the Candid#1 vaccine strain of Junin virus is highly attenuated and immunogenic. J Virol 90(3):1290–1297. https://doi.org/10.1128/JVI.02615-15. (PMID: 10.1128/JVI.02615-1526581982)
      Hallam SJ, Manning JT, Maruyama J, Seregin A, Huang C, Walker DH, de la Torre JC, Paessler S (2020) A single mutation (V64G) within the RING Domain of Z attenuates Junin virus. PLoS Negl Trop Dis 14(9):e0008555. https://doi.org/10.1371/journal.pntd.0008555. (PMID: 10.1371/journal.pntd.0008555329765387540883)
      Golden JW, Beitzel B, Ladner JT, Mucker EM, Kwilas SA, Palacios G, Hooper JW (2017) An attenuated Machupo virus with a disrupted L-segment intergenic region protects guinea pigs against lethal Guanarito virus infection. Sci Rep 7(1):4679. https://doi.org/10.1038/s41598-017-04889-x. (PMID: 10.1038/s41598-017-04889-x286800575498534)
      Kotturi MF, Botten J, Maybeno M, Sidney J, Glenn J, Bui HH, Oseroff C, Crotty S, Peters B, Grey H, Altmann DM, Buchmeier MJ, Sette A (2010) Polyfunctional CD4 + T cell responses to a set of pathogenic arenaviruses provide broad population coverage. Immunome Res 6:4. https://doi.org/10.1186/1745-7580-6-4. (PMID: 10.1186/1745-7580-6-4204780582880318)
      Kotturi MF, Botten J, Sidney J, Bui HH, Giancola L, Maybeno M, Babin J, Oseroff C, Pasquetto V, Greenbaum JA, Peters B, Ting J, Do D, Vang L, Alexander J, Grey H, Buchmeier MJ, Sette A (2009) A multivalent and cross-protective vaccine strategy against arenaviruses associated with human disease. PLoS Pathog 5(12):e1000695. https://doi.org/10.1371/journal.ppat.1000695. (PMID: 10.1371/journal.ppat.1000695200198012787016)
      Mattar S, Guzman C, Arrazola J, Soto E, Barrios J, Pini N, Levis S, Salazar-Bravo J, Mills JN (2011) Antibody to arenaviruses in rodents, Caribbean Colombia. Emerg Infect Dis 17(7):1315–1317. https://doi.org/10.3201/eid1707.101961. (PMID: 10.3201/eid1707.101961217626023381393)
      Castellar A, Guevara M, Rodas JD, Londoño AF, Arroyave E, Díaz FJ, Levis S, Blanco PJ (2017) Primera evidencia de infección por el virus de la coriomeningitis linfocítica (arenavirus) en roedores Mus musculus capturados en la zona urbana del municipio de Sincelejo. Sucre Colomb Biomed 37(0):75–85. https://doi.org/10.7705/biomedica.v37i2.3226. (PMID: 10.7705/biomedica.v37i2.3226)
      Rodríguez-Morales AJ, Suárez JA, Risquez A, Cimerman S, Valero-Cedeño N, Cabrera M, Grobusch MP, Paniz-Mondolfi A (2019) In the eye of the storm: Infectious disease challenges for border countries receiving Venezuelan migrants. Travel Med Infect Dis 30:4–6. https://doi.org/10.1016/j.tmaid.2019.05.014. (PMID: 10.1016/j.tmaid.2019.05.01431129271)
    • Grant Information:
      D43 TW010331 United States TW FIC NIH HHS; 2D43TW010331 ÁAFM
    • Publication Date:
      Date Created: 20220517 Date Completed: 20220810 Latest Revision: 20220810
    • Publication Date:
      20231215
    • Accession Number:
      PMC9110938
    • Accession Number:
      10.1007/s00705-022-05453-3
    • Accession Number:
      35579715