Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Association study of morpho-phenological traits in quinoa (Chenopodium quinoa Willd.) using SSR markers.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      In this study, the genetic and molecular diversity of 60 quinoa accessions was assessed using agronomically important traits related to grain yield as well as microsatellite (SSR) markers, and informative markers linked to the studied traits were identified using association study. The results showed that most of the studied traits had a relatively high diversity, but grain saponin and protein content showed the highest diversity. High diversity was also observed in all SSR markers, but KAAT023, KAAT027, KAAT036, and KCAA014 showed the highest values for most of the diversity indices and can be introduced as the informative markers to assess genetic diversity in quinoa. Population structure analysis showed that the studied population probably includes two subclusters, so that out of 60 quinoa accessions, 29 (48%) and 23 (38%) accessions were assigned to the first and second subclusters, respectively, and eight (13%) accessions were considered as the mixed genotypes. The study of the population structure using Structure software showed two possible subgroups (K = 2) in the studied population and the results of the bar plot confirmed it. Association study using the general linear model (GLM) and mixed linear model (MLM) identified the number of 35 and 32 significant marker-trait associations (MTAs) for the first year (2019) and 37 and 35 significant MTAs for the second year (2020), respectively. Among the significant MTAs identified for different traits, the highest number of significant MTAs were obtained for grain yield and 1000-grain weight with six and five MTAs, respectively.
      (© 2024. The Author(s).)
    • References:
      Jarvis, D. E. et al. The genome of Chenopodium quinoa. Nature 542, 307–312. https://doi.org/10.1038/nature21370 (2017). (PMID: 10.1038/nature2137028178233)
      Bhargava, A., Shukla, S. & Ohri, D. Chenopodium quinoa. An Indian perspective. Ind. Crops Prod. 23, 73–87. https://doi.org/10.1016/j.indcrop.2005.04.002 (2006). (PMID: 10.1016/j.indcrop.2005.04.002)
      Bhargava, A., Shukla, S., Dixit, B. S., Bannerji, R. & Ohri, D. Variability and genotype × cutting interactions for different nutritional components in Chenopodium album L.. Horticult. Sci. 33, 29–38. https://doi.org/10.1093/genetics/49.4.725 (2006). (PMID: 10.1093/genetics/49.4.725)
      Bhargava, A., Shukla, S., Katiyar, R. S. & Ohri, D. Selection parameters for genetic improvement in Chenopodium grain yield in sodic soil. J. Appl. Horticult. 5, 45–48 (2003). (PMID: 10.37855/jah.2003.v05i01.13)
      Jacobsen, S. E. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev. Int. 19, 167–177. https://doi.org/10.1081/FRI-120018883 (2003). (PMID: 10.1081/FRI-120018883)
      Jensen, C. R. et al. Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. Eur. J. Agron. 13, 11–25. https://doi.org/10.1016/S1161-0301(00)00055-1 (2000). (PMID: 10.1016/S1161-0301(00)00055-1)
      Jamali, S., Sharifan, H., Hezarjaribi, A. & Sepahvand, N. A. The effect of different levels of salinity on germination and growth indices of two cultivars of quinoa. J. Water Soil Resour. Conserv. 6, 87–98 (2016).
      Li, X. et al. Unraveling the complex trait of harvest index with association mapping in rice (Oryza sativa L.). PLoS ONE 7, e29350. https://doi.org/10.1371/journal.pone.0029350 (2012). (PMID: 10.1371/journal.pone.0029350222918893264563)
      Kanagaraj, P. et al. Microsatellite markers linked to drought resistance in rice (Oryza sativa L.). Curr. Sci. 98, 836–839 (2010).
      Tabkhkar, N., Rabiei, B., Samizadeh Lahiji, H. & Hosseini Chaleshtori, M. Genetic variation and association analysis of the SSR markers linked to the major drought-yield QTLs of rice. Biochem. Genet. 56, 356–374. https://doi.org/10.1007/s10528-018-9849-6 (2018). (PMID: 10.1007/s10528-018-9849-629478138)
      Maughan, P. J. et al. A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor. Appl. Genet. 109, 1188–1195. https://doi.org/10.1007/s00122-004-1730-9 (2004). (PMID: 10.1007/s00122-004-1730-915309300)
      Degenkolbe, T. et al. Identification of drought tolerance markers in a diverse population of rice cultivars by expression and metabolite profiling. PLoS ONE 8, e63637. https://doi.org/10.1371/journal.pone.0063637 (2013). (PMID: 10.1371/journal.pone.0063637237174583661581)
      Vikram, P. et al. Drought susceptibility of modern rice varieties: An effect of linkage of drought tolerance with undesirable traits. Sci. Rep. 5, 1–18. https://doi.org/10.1038/srep14799 (2015). (PMID: 10.1038/srep14799)
      Golicz, A. A., Bayer, P. E. & Edwards, D. Skim-based genotyping by sequencing. In Plant Genotyping: Methods and Protocols (ed. Batley, J.) 257–270 (Springer, 2015). (PMID: 10.1007/978-1-4939-1966-6_19)
      Kumar, S. et al. Meta-QTLs, ortho-MQTLs, and candidate genes for thermotolerance in wheat (Triticum aestivum L.). Mol. Breed. 41, 1–22 (2021). (PMID: 10.1007/s11032-021-01264-7)
      Myles, S. et al. Association mapping: Critical considerations shift from genotyping to experimental design. Plant Cell 21, 2194–2202. https://doi.org/10.1105/tpc.109.068437 (2009). (PMID: 10.1105/tpc.109.068437196542632751942)
      Nordborg, M. & Tavaré, S. Linkage disequilibrium: What history has to tell us. Trends Genet. 18, 83–90. https://doi.org/10.1016/S0168-9525(02)02557-X (2002). (PMID: 10.1016/S0168-9525(02)02557-X11818140)
      DeWan, A. et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314, 989–992. https://doi.org/10.1126/science.1133807 (2006). (PMID: 10.1126/science.113380717053108)
      Jarvis, D. E. et al. Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J. Genet. 87, 39–51 (2008). (PMID: 10.1007/s12041-008-0006-618560173)
      Rodriguez, L. A. & Isla, M. T. Comparative analysis of genetic and morphologic diversity among quinoa accessions (Chenopodium quinoa Willd.) of the South of Chile and highland accessions. J. Plant Breed. Crop Sci. 1, 210–216 (2009).
      El-Harty, E. H. et al. Morphological and molecular characterization of quinoa genotypes. Agriculture 11, 286. https://doi.org/10.3390/agriculture11040286 (2021). (PMID: 10.3390/agriculture11040286)
      Kover, P. X. et al. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet. 5, e1000551. https://doi.org/10.1371/journal.pgen.1000551 (2009). (PMID: 10.1371/journal.pgen.1000551195933752700969)
      Roy, J. K., Bandopadhyay, R., Rustgi, S., Balyan, H. S. & Gupta, P. K. Association analysis of agronomically important traits using SSR, SAMPL and AFLP markers in bread wheat. Curr. Sci. 90, 683–689 (2006).
      Zhou, J., You, A., Ma, Z., Zhu, L. & He, G. Association analysis of important agronomic traits in japonica rice germplasm. Afr. J. Biotechnol. 11, 2957–2970 (2012).
      Saghai Maroof, M. A., Soliman, K. M., Jorgensen, A. R. & Allard, R. W. Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc. Natl. Acad. Sci. 81, 8014–8018. https://doi.org/10.1073/pnas.81.24.8014 (1984). (PMID: 10.1073/pnas.81.24.80146096873392284)
      Mason, S. L. et al. Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci. 45, 1618–1630. https://doi.org/10.2135/cropsci2004.0295 (2005). (PMID: 10.2135/cropsci2004.0295)
      Ghomi, K., Rabiei, B., Sabouri, H. & Sabouri, A. Mapping QTLs for traits related to salinity tolerance at seedling stage of rice (Oryza sativa L.): An agrigenomics study of an Iranian rice population. OMICS J. Integr. Biol. 17, 242–251. https://doi.org/10.1089/omi.2012.0097 (2013). (PMID: 10.1089/omi.2012.0097)
      Rabiei, B., Valizadeh, M., Ghareyazie, B., Moghaddam, M. & Ali, A. J. Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR markers. Euphytica 137, 325–332. https://doi.org/10.1023/B:EUPH.0000040452.76276.76 (2004). (PMID: 10.1023/B:EUPH.0000040452.76276.76)
      Kimura, M. & Crow, J. F. The number of alleles that can be maintained in a finite population. Genetics 49, 725. https://doi.org/10.1093/genetics/49.4.725 (1964). (PMID: 10.1093/genetics/49.4.725141569291210609)
      Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. 70, 3321–3323. https://doi.org/10.1073/pnas.70.12.3321 (1973). (PMID: 10.1073/pnas.70.12.33214519626427228)
      Lewontin, R. C. Testing the theory of natural selection. Nature 236, 181–182. https://doi.org/10.1038/236181a0 (1972). (PMID: 10.1038/236181a0)
      Patiranage, D. S. et al. Genome-wide association study in quinoa reveals selection pattern typical for crops with a short breeding history. Elife 11, e66873. https://doi.org/10.5061/dryad.zgmsbcc9m (2020). (PMID: 10.5061/dryad.zgmsbcc9m)
      Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1998).
      Ward, S. M. Allotetraploid segregation for single-gene morphological characters in quinoa (Chenopodium quinoa Willd.). Euphytica 116, 11–16. https://doi.org/10.1023/A:1004070517808 (2000). (PMID: 10.1023/A:1004070517808)
      Liu, K. & Muse, S. V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–2129. https://doi.org/10.1093/bioinformatics/bti282 (2005). (PMID: 10.1093/bioinformatics/bti28215705655)
      Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. https://doi.org/10.1093/genetics/155.2.945 (2000). (PMID: 10.1093/genetics/155.2.945108354121461096)
      Borba, T. C. D. O. et al. Association mapping for yield and grain quality traits in rice (Oryza sativa L.). Genet. Mol. Biol. 33, 515–524. https://doi.org/10.1590/S1415-47572010005000065 (2010). (PMID: 10.1590/S1415-47572010005000065)
      Spataro, G. et al. Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L.. Theor. Appl. Genet. 122, 1281–1291. https://doi.org/10.1007/s00122-011-1530-y (2011). (PMID: 10.1007/s00122-011-1530-y21279322)
      Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005). (PMID: 10.1111/j.1365-294X.2005.02553.x15969739)
      Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635. https://doi.org/10.1093/bioinformatics/btm308 (2007). (PMID: 10.1093/bioinformatics/btm30817586829)
      Zhu, C., Gore, M., Buckler, E. S. & Yu, J. Status and prospects of association mapping in plants. Plant Genome 1, 5–20. https://doi.org/10.3835/plantgenome2008.02.0089 (2008). (PMID: 10.3835/plantgenome2008.02.0089)
      Saddiq, M. S. et al. Effect of water stress on grain yield and physiological characters of quinoa genotypes. Agronomy 1, 1934. https://doi.org/10.3390/agronomy11101934 (2021). (PMID: 10.3390/agronomy11101934)
      Manjarres-Hernández, E. H., Arias-Moreno, D. M., Morillo-Coronado, A. C., Ojeda-Pérez, Z. Z. & Cárdenas-Chaparro, A. Phenotypic characterization of quinoa (Chenopodium quinoa Willd.) for the selection of promising materials for breeding programs. Plants 10, 1339. https://doi.org/10.3390/plants10071339 (2021). (PMID: 10.3390/plants10071339342091128309096)
      Hussain, M. I., Muscolo, A., Ahmed, M., Asghar, M. A. & Al-Dakheel, A. J. Agro-morphological, yield and quality traits and interrelationship with yield stability in quinoa (Chenopodium quinoa Willd.) genotypes under saline marginal environment. Plants 9, 1763. https://doi.org/10.3390/plants9121763 (2020). (PMID: 10.3390/plants9121763333221397764209)
      Reguera, M. et al. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ 6, e4442 (2018). (PMID: 10.7717/peerj.4442295769445857176)
      Granado-Rodríguez, S. et al. Studying the impact of different field environmental conditions on seed quality of quinoa: The case of three different years changing seed nutritional traits in southern Europe. Front. Plant Sci. 12, 649132. https://doi.org/10.3389/fpls.2021.649132 (2021). (PMID: 10.3389/fpls.2021.649132340548958149766)
      Matías, J. et al. Assessment of the changes in seed yield and nutritional quality of quinoa grown under rainfed Mediterranean environments. Front. Plant Sci. 14, 1268014. https://doi.org/10.3389/fpls.2023.1268014 (2023). (PMID: 10.3389/fpls.2023.12680143802392210662129)
      Zhang, T. et al. Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genom. 18, 1–15. https://doi.org/10.1186/s12864-017-4093-8 (2017). (PMID: 10.1186/s12864-017-4093-8)
      Breseghello, F. & Sorrells, M. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172, 1165–1177. https://doi.org/10.1534/genetics.105.044586 (2006). (PMID: 10.1534/genetics.105.044586160792351456215)
      Pritchard, J. K. & Donnelly, P. Case–control studies of association in structured or admixed populations. Theor. Popul. Biol. 60, 227–237. https://doi.org/10.1006/tpbi.2001.1543 (2001). (PMID: 10.1006/tpbi.2001.154311855957)
      Al-Maskri, A. Y., Sajjad, M. & Khan, S. H. Association mapping: A step forward to discovering new alleles for crop improvement. Int. J. Agric. Biol. 14, 153–160. https://doi.org/10.13140/2.1.1925.9524 (2012). (PMID: 10.13140/2.1.1925.9524)
      Azizi, H., Aalami, A., Esfahani, M. & Ebadi, A. A. Association and structure analysis of some of rice (Oryza sativa L.) genetic resources based on microsatellite markers. Cereal Res. 7, 1–16. https://doi.org/10.22124/c.2017.2425 (2017). (PMID: 10.22124/c.2017.2425)
      Gupta, P. K., Rustgi, S. & Kulwal, P. L. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol. Biol. 57, 461–485. https://doi.org/10.1007/s11103-005-0257-z (2005). (PMID: 10.1007/s11103-005-0257-z15821975)
      Borghei, S. F., Azizi, A., Pourhosseini, S. H. & Rahimi-Rizi, M. Characterization of dragonhead (Dracocephalum moldavica L.) landraces: Genetic, chemotypic, and agro-morphologic perspectives. J. Appl. Res. Med. Aromat. Plants 38, 100522. https://doi.org/10.1016/j.jarmap.2023.100522 (2024). (PMID: 10.1016/j.jarmap.2023.100522)
      Laosatit, K., Taytragool, S., Pimsaythong, K. & Somta, P. Genetic diversity of quinoa (Chenopodium quinoa Willd.) germplasm as revealed by sequence-related amplified polymorphism markers. Agric. Nat. Resour. 55, 341–348. https://doi.org/10.34044/j.anres.2021.55.3.03 (2021). (PMID: 10.34044/j.anres.2021.55.3.03)
      Barut, M., Nadeem, M. A., Karaköy, T. & Baloch, F. S. DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using iPBS-retrotransposon marker system. Turk. J. Agric. For. 44, 479–491. https://doi.org/10.3906/tar-2001-10 (2020). (PMID: 10.3906/tar-2001-10)
      Manjarres-Hernández, E. H. & Morillo-Coronado, A. C. Genetic diversity of Colombian quinoa (Chenopodium quinoa Willd.): Implications for breeding programs. Genet. Resour. Crop Evol. 69, 2447–2458. https://doi.org/10.1016/j.agwat.2019.105784 (2022). (PMID: 10.1016/j.agwat.2019.105784)
      Cebeci, Z., Bayraktar, M. & Gökçe, G. Comparison of the statistical methods for genome-wide association studies on simulated quantitative traits of domesticated goats (Capra hircus L.). Small Rumin. Res. 227, 107053. https://doi.org/10.1016/j.smallrumres.2023.107053 (2023). (PMID: 10.1016/j.smallrumres.2023.107053)
      Nepal, N. et al. Phenotypic and genotypic resources for the USDA quinoa (Chenopodium quinoa) genebank accessions. Crop Sci. 63, 2685–2698. https://doi.org/10.1002/csc2.21037 (2023). (PMID: 10.1002/csc2.21037)
      Sivakumar, S. et al. Population structure and association mapping studies for yield-related traits in Maize (Zea mays L.). Curr. Plant Biol. 18, 100103. https://doi.org/10.1016/j.cpb.2019.04.001 (2019). (PMID: 10.1016/j.cpb.2019.04.001)
      Kaler, A. S., Gillman, J. D., Beissinger, T. & Purcell, L. C. Comparing different statistical models and multiple testing corrections for association mapping in soybean and maize. Front. Plant Sci. 10, 1794. https://doi.org/10.3389/fpls.2019.01794 (2020). (PMID: 10.3389/fpls.2019.01794321584527052329)
      Mizuno, N. et al. The genotype-dependent phenotypic landscape of quinoa in salt tolerance and key growth traits. DNA Res. 27, 022. https://doi.org/10.1093/dnares/dsaa022 (2020). (PMID: 10.1093/dnares/dsaa022)
    • Grant Information:
      1635237154 This research was funded by the University of Guilan with Grant No. 1635237154.
    • Contributed Indexing:
      Keywords: Association study; General linear model; Grain yield and yield components; Marker-trait association; Multiple linear model; Yield components
    • Publication Date:
      Date Created: 20240313 Date Completed: 20240314 Latest Revision: 20240316
    • Publication Date:
      20240316
    • Accession Number:
      PMC10933322
    • Accession Number:
      10.1038/s41598-024-56587-0
    • Accession Number:
      38472315