Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Evaluation of the influence of aerosols on radiative processes and turbulent surface flows within the Aburrá Valley ; Evaluación de la influencia de aerosoles en procesos radiativos y flujos superficiales turbulentos dentro del Valle de Aburrá

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Hoyos, Carlos David; Herrera Mejía, Laura
    • Publication Information:
      Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
      Departamento de Geociencias y Medo Ambiente
      Universidad Nacional de Colombia - Sede Medellín
    • Publication Date:
      2020
    • Abstract:
      El Valle de Aburrá, un valle densamente poblado ubicado en Colombia, con una topografía de alta complejidad en la cordillera de los Andes, ha experimentado en los últimos cinco años la aparición de episodios críticos de contaminación atmosférica, caracterizados por un aumento en la concentración de aerosoles. Este estudio combina información en tierra y satelital para estudiar los impactos de los aerosoles troposféricos en la radiación, los flujos de energía, capa límite atmosférica, propiedades de las nubes y precipitación en la escala local (Valle de Aburrá) y regional (Colombia). En el valle de Aburrá, la dispersión y absorción de los aerosoles disminuyen la radiación en superficie hasta más de -40 W/m2; adicionalmente inhiben los flujos de calor latente y sensible, modificando de esta forma la evolución de la capa límite atmosférica. En Colombia, los efectos de los aerosoles están relacionados con los eventos de quema de biomasa que ocurren anualmente en el norte y el este de Colombia. Dado que cada gota de nube necesita una partícula de aerosol (un núcleo de condensación de la nube) para su activación, los aerosoles en Colombia y el Valle también han modificado las propiedades de las nubes. Este estudio encontró reducciones en el tamaño de las gotas de nubes para diferentes tipos de nubes. También investigamos los impactos de los aerosoles en la nube convectivas, y llegamos a la conclusión de que el proceso de difusión podría retrasarse durante episodios de alta concentración de aerosoles. Evaluamos las interacciones aerosoles-nube-precipitación, encontrando un aumento en los eventos de lluvia por la tarde debido a la presencia de aerosoles. Las modificaciones resultantes en las propiedades meteorológicas del Valle de Aburrá podrían inducir retroalimentaciones positivas que conducirían a mayores aumentos en la concentración de contaminantes. ; The Aburrá Valley, a densely populated valley in Colombia, with highly complex topography at the Andes mountain range, has experienced during the past five years the ...
    • File Description:
      application/pdf
    • Relation:
      Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923):1227–1230.; Altaratz, O., Koren, I., Remer, L., and Hirsch, E. (2014). Cloud invigoration by aerosols—coupling between microphysics and dynamics. Atmospheric Research, 140:38–60.; Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A., Frank, G., Longo, K., and Silva-Dias, M. A. F. d. (2004). Smoking rain clouds over the amazon. science, 303(5662):1337–1342.; Arakawa, A. and Schubert, W. H. (1974). Interaction of a cumulus cloud ensemble with the large-scale environment, part i. Journal of the Atmospheric Sciences, 31(3):674–701.; Atwater, M. A. (1970). Planetary albedo changes due to aerosols. Science, 170(3953):64–66.; Bedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., and Poveda, G. (2019). Seasonal shift of the diurnal cycle of rainfall over medellin’s valley, central andes of colombia (1998–2005). Frontiers in Earth Science, 7:92.; Bell, T. L., Rosenfeld, D., Kim, K.-M., Yoo, J.-M., Lee, M.-I., and Hahnenberger, M. (2008). Midweek increase in us summer rain and storm heights suggests air pollution invigorates rainstorms. Journal of Geophysical Research: Atmospheres, 113(D2).; Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., et al. (2013). Clouds and aerosols. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pages 571–657. Cambridge University Press.; Boucher, O., Schwartz, S. o., Ackerman, T., Anderson, T., Bergstrom, B., Bonnel, B., Chỳlek, P., Dahlback, A., Fouquart, Y., Fu, Q., et al. (1998). Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols. Journal of Geophysical Research: Atmospheres, 103(D14):16979–16998.; Boucher, O. and Tanré, D. (2000). Estimation of the aerosol perturbation to the earth’s radiative budget over oceans using polder satellite aerosol retrievals. Geophysical research letters, 27(8):1103–1106.; Braslau, N. and Dave, J. (1973). Effect of aerosols on the transfer of solar energy through realistic model atmospheres. part i: Non-absorbing aerosols. Journal of applied meteorology, 12(4):601–615.; Bréon, F.-M., Tanré, D., and Generoso, S. (2002). Aerosol effect on cloud droplet size monitored from satellite. Science, 295(5556):834–838. Cess, R., Potter, G., Ghan, S., and Gates, W. (1985). The climatic effects of large injections of atmospheric smoke and dust: A study of climate feedback mechanisms with one-and three-dimensional climate models. Journal of Geophysical Research: Atmospheres, 90(D7):12937–12950.; Chandra, S., Dwivedi, A. K., and Kumar, M. (2014). Characterization of the atmospheric boundary layer from radiosonde observations along eastern end of monsoon trough of India. Journal Earth Syst. Sci, 123(6):1233–1240.; Charlock, T. P. and Sellers, W. D. (1980). Aerosol effects on climate: Calculations with time-dependent and steady-state radiative-convective models. Journal of the atmospheric sciences, 37(6):1327–1341.; Charlson, R. and Pilat, M. (1969). Climate: The influence of aerosols. Journal of Applied Meteorology, 8(6):1001–1002.; Christensen, M. W., Chen, Y.-C., and Stephens, G. L. (2016). Aerosol indirect effect dictated by liquid clouds. Journal of Geophysical Research: Atmospheres, 121(24):14–636.; Christopher, S. A. and Zhang, J. (2002). Shortwave aerosol radiative forcing from modis and ceres observations over the oceans. Geophysical Research Letters, 29(18):6–1.; Coakley, J. A., Bernstein, R. L., and Durkee, P. A. (1987). Effect of ship-stack effluents on cloud reflectivity. Science, 237(4818):1020–1022.; Coakley Jr, J. A., Cess, R. D., and Yurevich, F. B. (1983). The effect of tropospheric aerosols on the earth’s radiation budget: A parameterization for climate models. Journal of the Atmospheric Sciences, 40(1):116–138.; De Wekker, S. F. J. and Kossmann, M. (2015). Convective Boundary Layer Heights Over Mountainous Terrain—A Review of Concepts. Frontiers in Earth Science, 3:77.; DePuy, V., Berger, V. W., and Zhou, Y. (2014). Wilcoxon-mann-whitney test: Overview. Wiley StatsRef: Statistics Reference Online.; Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and Slutsker, I. (2002). Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the atmospheric sciences, 59(3):590–608.; Emeis, S., Schäfer, K., Münkel, C., Friedl, R., and Suppan, P. (2012). Evaluation of the interpretation of ceilometer data with rass and radiosonde data. Boundary-layer meteorology, 143(1):25–35.; Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A., Martin, S. T., Yang, Y., Wang, J., Artaxo, P., et al. (2018). Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science, 359(6374):411–418.; Feingold, G., Remer, L. A., Ramaprasad, J., and Kaufman, Y. J. (2001). Analysis of smoke impact on clouds in brazilian biomass burning regions: An extension of twomey’s approach. Journal of Geophysical Research: Atmospheres, 106(D19):22907–22922.; Feingold, G., Stevens, B., Cotton, W., and Walko, R. (1994). An explicit cloud microphysics/les model designed to simulate the twomey effect. Atmospheric Research, 33(1-4):207–233.; Freitas, S. R., Longo, K. M., Dias, M. A. S., Dias, P. L. S., Chatfield, R., Prins, E., Artaxo, P., Grell, G. A., and Recuero, F. S. (2005). Monitoring the transport of biomass burning emissions in south america. Environmental Fluid Mechanics, 5(1-2):135–167.; Garcı́a, O., Dı́az, A., Expósito, F., Dı́az, J., Dubovik, O., Dubuisson, P., Roger, J.-C., Eck, T., Sinyuk, A., Derimian, Y., et al. (2008). Validation of aeronet estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements. Journal of Geophysical Research: Atmospheres, 113(D21).; Garcı́a, O., Dı́az, J., Expósito, F., Dı́az, A., Dubovik, O., Dubuisson, P., Roger, J.-C., et al. (2012). Shortwave radiative forcing and efficiency of key aerosol types using aeronet data. Atmospheric Chemistry and Physics, 12(11):5129.; Garrett, T., Zhao, C., Dong, X., Mace, G., and Hobbs, P. (2004). Effects of varying aerosol regimes on low-level arctic stratus. Geophysical Research Letters, 31(17).; Gobbi, G., Kaufman, Y., Koren, I., and Eck, T. (2007). Classification of aerosol properties derived from aeronet direct sun data.; Grosvenor, D. P., Sourdeval, O., Zuidema, P., Ackerman, A., Alexandrov, M. D., Bennartz, R., Boers, R., Cairns, B., Chiu, J. C., Christensen, M., et al. (2018). Remote sensing of droplet number concentration in warm clouds: A review of the current state of knowledge and perspectives. Reviews of Geophysics, 56(2):409–453.; Guzman, G. (2018). Analisis de la influencia del diseño urbano en la meteorologia del valle de aburra. Master’s thesis, Universidad Nacional de Colombia - Sede Medellı́n.; Hansen, J. E. and Travis, L. D. (1974). Light scattering in planetary atmospheres. Space science reviews, 16(4):527–610.; Herrera-Mejı́a, L. and Hoyos, C. D. (2019a). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the WRF model: the Aburrá Valley case-study. Quarterly Journal of the Royal Meteorological Society, 0(0).; Herrera-Mejı́a, L. and Hoyos, C. D. (2019b). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the wrf model: the aburrá valley case-study. Quarterly Journal of the Royal Meteorological Society, 145(723):2641–2665.; Holanda, B. A., Pöhlker, M. L., Saturno, J., Sörgel, M., Ditas, J., Ditas, F., Wang, Q.,Donth, T., Artaxo, P., Barbosa, H. M., et al. (2020). Influx of african biomass burning aerosol during the amazonian dry season through layered transatlantic transport of black carbon-rich smoke. Atmospheric Chemistry and Physics, 20(8):4757–4785.; Hoyos, C. D., Herrera-Mejı́a, L., Roldán-Henao, N., and Isaza, A. (2020). Effects of fireworks on particulate matter concentration in a narrow valley: the case of the medellı́n metropolitan area. Environmental Monitoring and Assessment, 192(1):6.; Hulst, H. C. and van de Hulst, H. C. (1981). Light scattering by small particles. Courier Corporation.; Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409(6821):695–697.; Jia, H., Ma, X., Yu, F., Liu, Y., and Yin, Y. (2019). Distinct impacts of increased aerosols on cloud droplet number concentration of stratus/stratocumulus and cumulus. Geophysical Research Letters, 46(22):13517–13525.; Kaufman, Y. J. (1993). Aerosol optical thickness and atmospheric path radiance. Journal of Geophysical Research: Atmospheres, 98(D2):2677–2692.; King, M. D., Menzel, W. P., Kaufman, Y. J., Tanré, D., Gao, B.-C., Platnick, S., Ackerman, S. A., Remer, L. A., Pincus, R., and Hubanks, P. A. (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from modis. IEEE Transactions on Geoscience and Remote Sensing, 41(2):442–458.; Kleinman, L. I., Daum, P. H., Lee, Y.-N., Lewis, E. R., Sedlacek III, A., Senum, G., Springs-ton, S., Wang, J., Hubbe, J., Jayne, J., et al. (2012). Aerosol concentration and size distribution measured below, in, and above cloud from the doe g-1 during vocals-rex. Atmospheric Chemistry and Physics, 12(1):207.; Koren, I., Kaufman, Y. J., Remer, L. A., and Martins, J. V. (2004). Measurement of the effect of amazon smoke on inhibition of cloud formation. Science, 303(5662):1342–1345.; Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A., and Rudich, Y. (2005). Aerosol invigoration and restructuring of atlantic convective clouds. Geophysical Research Letters, 32(14).; Lacagnina, C., Hasekamp, O. P., and Torres, O. (2017). Direct radiative effect of aerosols based on parasol and omi satellite observations. Journal of Geophysical Research: Atmospheres, 122(4):2366–2388.; Lacis, A. A. and Hansen, J. (1974). A parameterization for the absorption of solar radiation in the earth’s atmosphere. Journal of the atmospheric sciences, 31(1):118–133.; Levy, R., Mattoo, S., Munchak, L., Remer, L., Sayer, A., Patadia, F., and Hsu, N. (2013). The collection 6 modis aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11):2989.; Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H., Zhang, H., and Zhu, B. (2017). Aerosol and boundary-layer interactions and impact on air quality. National Science Review, 4(6):810–833.; Loeb, N. G. and Kato, S. (2002). Top-of-atmosphere direct radiative effect of aerosols over the tropical oceans from the clouds and the earth’s radiant energy system (ceres) satellite instrument. Journal of Climate, 15(12):1474–1484.; Loeb, N. G. and Manalo-Smith, N. (2005). Top-of-atmosphere direct radiative effect of aerosols over global oceans from merged ceres and modis observations. Journal of climate, 18(17):3506–3526.; Loeb, N. G., Manalo-Smith, N., Kato, S., Miller, W. F., Gupta, S. K., Minnis, P., and Wielicki, B. A. (2003). Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the earth’s radiant energy system instrument on the tropical rainfall measuring mission satellite. part i: Methodology. Journal of applied meteorology, 42(2):240–265.; Loeb, N. G. and Su, W. (2010). Direct aerosol radiative forcing uncertainty based on a radiative perturbation analysis. Journal of climate, 23(19):5288–5293.; Lotteraner, C. and Piringer, M. (2016). Mixing-Height Time Series from Operational Ceilometer Aerosol-Layer Heights. Boundary-Layer Meteorology, 161(2):265–287.; Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The annals of mathematical statistics, pages 50–60.; Matus, A. V., L’Ecuyer, T. S., Kay, J. E., Hannay, C., and Lamarque, J.-F. (2015). The role of clouds in modulating global aerosol direct radiative effects in spaceborne active observations and the community earth system model. Journal of Climate, 28(8):2986–3003.; McCormick, R. A. and Ludwig, J. H. (1967). Climate modification by atmospheric aerosols. Science, 156(3780):1358–1359.; Mendez-Espinosa, J., Belalcazar, L., and Betancourt, R. M. (2019). Regional air quality impact of northern south america biomass burning emissions. Atmospheric environment, 203:131–140.; Molinié, J. and Pontikis, C. (1995). A climatological study of tropical thunderstorm clouds and lightning frequencies on the french guyana coast. Geophysical research letters, 22(9):1085–1088.; Münkel, C. and Roininen, R. (2010). Automatic monitoring of boundary layer structures with ceilometers. Vaisala News, 184.; Myhre, G. (2009). Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science, 325(5937):187–190.; Nakajima, T., Higurashi, A., Kawamoto, K., and Penner, J. E. (2001). A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophysical Research Letters, 28(7):1171–1174.; Nakajima, T. and King, M. D. (1990). Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. part i: Theory. Journal of the atmospheric sciences, 47(15):1878–1893.; Nemesure, S., Wagener, R., and Schwartz, S. E. (1995). Direct shortwave forcing of climate by the anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity. Journal of Geophysical Research: Atmospheres, 100(D12):26105–26116. North, G. R., Pyle, J. A., and Zhang, F. (2014). Encyclopedia of atmospheric sciences, volume 1. Elsevier.; Patadia, F., Gupta, P., and Christopher, S. A. (2008). First observational estimates of global clear sky shortwave aerosol direct radiative effect over land. Geophysical research letters, 35(4).; Pawlowska, H. and Brenguier, J.-L. (2000). Microphysical properties of stratocumulus clouds during ace-2. Tellus B, 52(2):868–887.; Penner, J., Charlson, R., Hales, J., Laulainen, N., Leifer, R., Novakov, T., Ogren, J., Radke, L., Schwartz, S., and Travis, L. (1994). Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols. Bulletin of the American Meteorological Society, 75(3):375–400.; Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A., Riédi, J. C., and Frey, R. A. (2003). The modis cloud products: Algorithms and examples from terra. IEEE Transactions on Geoscience and Remote Sensing, 41(2):459–473.; Quaas, J., Boucher, O., Bellouin, N., and Kinne, S. (2008). Satellite-based estimate of the direct and indirect aerosol climate forcing. Journal of Geophysical Research: Atmospheres,113(D5).; Radke, L. F., Coakley, J. A., and King, M. D. (1989). Direct and remote sensing observations of the effects of ships on clouds. Science, 246(4934):1146–1149.; Rajeev, K. and Ramanathan, V. (2001). Direct observations of clear-sky aerosol radiative forcing from space during the indian ocean experiment. Journal of Geophysical Research: Atmospheres, 106(D15):17221–17235.; Ramanathan, V., Crutzen, P., Kiehl, J., and Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. science, 294(5549):2119–2124.; Reid, J. S. and Hobbs, P. V. (1998). Physical and optical properties of young smoke from individual biomass fires in brazil. Journal of Geophysical Research: Atmospheres, 103(D24):32013–32030.; Roldán-Henao, N., Hoyos, C. D., Herrera-Mejı́a, L., and Isaza, A. (2020). An investigation of the precipitation net effect on the particulate matter concentration in a narrow valley: Role of lower troposphere stability. Journal of Applied Meteorology and Climatology, (2020).; Rosenfeld, D. (1999). Trmm observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophysical research letters, 26(20):3105–3108.; Rosenfeld, D. (2000). Suppression of rain and snow by urban and industrial air pollution. Science, 287(5459):1793–1796.; Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., de Leeuw, G., Donovan, D. P., Kahn, R., Kinne, S., Kivekäs, N., Kulmala, M., et al. (2014). Global observations of aerosol-cloud-precipitation-climate interactions. Reviews of Geophysics, 52(4):750–808.; Rosenfeld, D. and Gutman, G. (1994). Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of avhrr data. Atmospheric research, 34(1-4):259–283.; Rosenfeld, D., Kaufman, Y., and Koren, I. (2006). Switching cloud cover and dynamical regimes from open to closed benard cells in response to the suppression of precipitation by aerosols.; Rosenfeld, D. and Lensky, I. M. (1998). Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bulletin of the American Meteorological Society, 79(11):2457–2476.; Rosenfeld, D., Lohmann, U., Raga, G. B., O’Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M. O. (2008). Flood or drought: how do aerosols affect precipitation? science, 321(5894):1309–1313.; Rossow, W., Mosher, F., Kinsella, E., Arking, A., Desbois, M., Harrison, E., Minnis, P., Ruprecht, E., Seze, G., Simmer, C., et al. (1985). Isccp cloud algorithm intercomparison. Journal of Climate and Applied Meteorology, 24(9):877–903.; Schuster, G. L., Dubovik, O., and Holben, B. N. (2006). Angstrom exponent and bimodal aerosol size distributions. Journal of Geophysical Research: Atmospheres, 111(D7).; Seinfeld, J. H. and Pandis, S. N. (2012). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.; Sepúlveda, J. (2015). Estimación cuantitativa de precipitación a partir de la información de radar meteorológico del área metropolitana del valle de aburrá. Master’s thesis, Universidad Nacional de Colombia - Sede Medellı́n.; Sepúlveda, J. and Hoyos, C. D. (2017). Disdrometer-based C-Band Radar Quantitative Precipitation Estimation (QPE) in a highly complex terrain region in tropical Colombia. AGU Fall Meeting Abstracts.; Shi, S., Cheng, T., Gu, X., Guo, H., Wu, Y., and Wang, Y. (2019). Biomass burning aerosol characteristics for different vegetation types in different aging periods. Environment international, 126:504–511.; Stull, R. B. (1988). An Introduction to Boundary Layer Meteorology, volume 13. Springer.; Su, W., Loeb, N. G., Schuster, G. L., Chin, M., and Rose, F. G. (2013). Global all-sky shortwave direct radiative forcing of anthropogenic aerosols from combined satellite observations and gocart simulations. Journal of Geophysical Research: Atmospheres, 118(2):655–669.; Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., and Zhang, C. (2012). Impact of aerosols on convective clouds and precipitation. Reviews of Geophysics, 50(2).; Twomey, S. et al. (1974). Pollution and the planetary albedo. Atmos. Environ, 8(12):1251–1256.; Universidad Pontificia Bolivariana and Área Metropolitana del Valle de Aburrá (2017). Inventario de emisiones atmosféricas del Valle de Aburrá, actualización 2015. Technical report, Área Metropolitana del Valle de Aburrá, Medellı́n.; Wallace, J. M. and Hobbs, P. V. (2006). Atmospheric science: an introductory survey, volume 92. Elsevier.; Weare, B. C., Temkin, R. L., and Snell, F. M. (1974). Aerosol and climate: some further considerations. Science, 186(4166):827–828.; Werner, F., Ditas, F., Siebert, H., Simmel, M., Wehner, B., Pilewskie, P., Schmeissner, T., Shaw, R., Hartmann, S., Wex, H., et al. (2014). Twomey effect observed from collocated microphysical and remote sensing measurements over shallow cumulus. Journal of Geophysical Research: Atmospheres, 119(3):1534–1545.; Whiteman, C. D., Hoch, S. W., Horel, J. D., and Charland, A. (2014). Relationship between particulate air pollution and meteorological variables in Utah’s Salt Lake Valley. Atmospheric Environment, 94:742–753.; Young, D., Minnis, P., Doelling, D., Gibson, G., and Wong, T. (1998). Temporal interpolation methods for the clouds and the earth’s radiant energy system (ceres) experiment. Journal of Applied Meteorology, 37(6):572–590.; Yu, H., Kaufman, Y., Chin, M., Feingold, G., Remer, L., Anderson, T., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., et al. (2006). A review of measurement-based assessments of the aerosol direct radiative effect and forcing.; Yu, H., Liu, S., and Dickinson, R. E. (2002). Radiative effects of aerosols on the evolution of the atmospheric boundary layer. Journal of Geophysical Research: Atmospheres, 107(D12):AAC–3.; Yu, H., Liu, S. C., and Dickinson, R. E. (2001). Radiative effects of aerosols on the evolution of the atmospheric boundary layer. Journal of Geophysical Research: Atmospheres, 107(D12):AAC 3–1–AAC 3–14.; Zhang, Y., Gao, Z., Li, D., Li, Y., Zhang, N., Zhao, X., and Chen, J. (2014). On the computation of planetary boundary-layer height using the bulk Richardson number method. Geoscientific Model Development, 7(6):2599–2611.; https://repositorio.unal.edu.co/handle/unal/79310
    • Online Access:
      https://repositorio.unal.edu.co/handle/unal/79310
    • Rights:
      info:eu-repo/semantics/openAccessDerechos reservados - Universidad Nacional de Colombia ; Atribución-SinDerivadas 4.0 Internacional ; Acceso abierto ; http://creativecommons.org/licenses/by-nd/4.0/ ; info:eu-repo/semantics/openAccess
    • Accession Number:
      edsbas.560C071E