Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Metodología de análisis de factibilidad para microrredes aisladas con enfoque en la zona no interconectada de Colombia ; Feasibility analysis methodology for isolated microgrids with a focus on the non-interconnected zone of Colombia

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Rolón Rios, Juan Eduardo
    • Publication Information:
      Maestría en Gerencia de Proyectos
      Facultad de Ingeniería
      Universidad Militar Nueva Granada
    • Publication Date:
      2022
    • Collection:
      Universidad Militar Nueva Granada: Repositorio Institucional UMNG
    • Subject Terms:
    • Abstract:
      Este trabajo de investigación desarrolló una metodología estructurada para la toma de decisión sobre la factibilidad de microrredes en las ZNI, partiendo del juicio de expertos se aplicó una encuesta semiestructurada de comparación pareada a diferentes especialidades: ingeniería, biología, antropología, estudios sociales y finanzas con la finalidad de formular un modelo de evaluación multicriterio basado en la metodología denominada Proceso Analítico en Red o ANP, desarrollada por el doctor Thomas Saaty; mediante la cual se construyó una arquitectura de cuatro (4) clústeres y 22 subcriterios para la evaluación comparativa de alternativas basada en una ponderación conjunta de todos los criterios y subcriterios de la red, garantizando así la objetividad en el proceso y también la integración de las influencias que pueden coexistir entre cada uno de los nodos de la red. ; RESUMEN XII CAPÍTULO 1: INTRODUCCIÓN 1 1.2 PLANTEAMIENTO DEL PROBLEMA 1 1.2.1 Contexto mundial 1 1.2.1.1 Ejemplos del uso de microrredes en el mundo 3 1.2.2 Contexto Colombiano 7 1.2.2.1 Sistema interconectado nacional 7 1.2.2.2 Zonas no interconectadas 7 1.2.2.3 Matriz energética colombiana 8 1.2.2.4 Casos de éxito de microrredes en Colombia 11 1.2.2.5 Definición del problema 12 1.3 JUSTIFICACIÓN 13 1.4 OBJETIVOS 14 1.4.1 Objetivo General 14 1.4.2 Objetivos Específicos 14 1.5 ALCANCE 14 1.6 PRESENTACIÓN DEL DOCUMENTO 15 2 CAPÍTULO 2: ANTECEDENTES Y ESTADO DEL ARTE 16 2.1 FACTIBILIDAD FINANCIERA 16 2.2 FACTIBILIDAD SOCIAL 17 2.3 FACTIBILIDAD TÉCNICA 18 2.4 EVALUACIÓN DE FACTIBILIDAD MULTICRITERIO 19 3 CAPÍTULO 3: MARCO DE REFERENCIA 21 3.1 MARCO TEÓRICO 21 3.1.1 Eficiencia energética PAI-PROURE 2022-2030 21 3.1.2 Estudio de Factibilidad 22 3.1.2.1 Estudio de mercado 22 3.1.2.2 Aspectos administrativos 23 3.1.2.3 Aspectos institucionales 24 3.1.2.4 Aspectos Financieros 24 3.1.2.5 Aspectos socioeconómicos 25 3.1.2.6 Aspectos técnicos 25 3.1.2.7 Aspectos ambientales 26 3.1.3 Conceptos financieros aplicados al estudio de factibilidad de proyectos 26 ...
    • File Description:
      applicaction/pdf; application/pdf
    • Relation:
      Almeshqab, F., & Ustun, T. S. (2019). Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects. Renewable and Sustainable Energy Reviews, 102(November 2018), 35–53. https://doi.org/10.1016/j.rser.2018.11.035; Amjith, L. R., & Bavanish, B. (2022). A review on biomass and wind as renewable energy for sustainable environment. Chemosphere, 293(October 2021). https://doi.org/10.1016/j.chemosphere.2022.133579; Antonsson, F., Lindvall, D., Lagerkvist, J., & Rempling, R. (2021). Optimal time for contractors to enter infrastructure projects. Procedia Computer Science, 196, 990–998. https://doi.org/10.1016/j.procs.2021.12.101; Astriani, Y., & Shafiullah, G. M. (2019). ScienceDirect ScienceDirect ScienceDirect Techno-economic Evaluation of Utilizing a Small-Scale Microgrid Techno-economic Evaluation of Utilizing a Heating Small-Scale Microgrid Assessing the feasibility of using the heat temperature function for a long-term district heat demand forecast. Energy Procedia, 158, 3131–3137. https://doi.org/10.1016/j.egypro.2019.01.1013; Báez, José. Forero, R. (2018). Energía solar fotovoltaica, una alternativa sustentable para el futuro. Universidad Santo Tomás Bogotá, Colombia, 1–14. https://repository.usta.edu.co/bitstream/handle/11634/10713/2018Baezjose.pdf?sequence=1; Basak, I., & Saaty, T. (1993). Group decision making using the analytic hierarchy process. Mathematical and Computer Modelling, 17(4–5), 101–109. https://doi.org/10.1016/0895-7177(93)90179-3; Basbous, T., Younes, R., Ilinca, A., & Perron, J. (2012). A new hybrid pneumatic combustion engine to improve fuel consumption of wind-Diesel power system for non-interconnected areas. Applied Energy, 96, 459–476. https://doi.org/10.1016/j.apenergy.2012.03.005; Bern, C.-. (2022). Handbook part I : Software Global Meteorological Database Version 8 Software and Data for Engineers , Planers and Education. January.; Bhuvad, S. S., & Udayraj. (2022). Investigation of annual performance of a building shaded by rooftop PV panels in different climate zones of India. Renewable Energy, 189, 1337–1357. https://doi.org/10.1016/j.renene.2022.03.004; Billionnet, A., Costa, M. C., & Poirion, P. L. (2016). Robust optimal sizing of a hybrid energy stand-alone system. European Journal of Operational Research, 254(2), 565–575. https://doi.org/10.1016/j.ejor.2016.03.013; Bruck, M., & Sandborn, P. (2021). Pricing bundled renewable energy credits using a modi fi ed LCOE for power purchase agreements. Renewable Energy, 170, 224–235.; Bullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., & Sumper, A. (2018). Microgrid clustering architectures. Applied Energy, 212(August 2017), 340–361. https://doi.org/10.1016/j.apenergy.2017.12.048; Bunker, K., Doig, S., Hawley, K., & Morris, J. (2015). Renewable Microgrids: Profiles From Islands and Remote Communities Across the Globe. Rocky Mountain Institute, 11(November), 1–32.; Castaño-Gómez, M., & García-Rendón, J. J. (2020). Análisis de los incentivos económicos en la capacidad instalada de energía solar fotovoltaica en Colombia. Lecturas de Economía, 93, 23–64. https://doi.org/10.17533/udea.le.n93a338727; Chicco, G., Somma, M. Di, & Graditi, G. (2021). Overview of distributed energy resources in the context of local integrated energy systems. Distributed Energy Resources in Local Integrated Energy Systems: Optimal Operation and Planning, 1–29. https://doi.org/10.1016/B978-0-12-823899-8.00002-9; Clarke, W. C., Brear, M. J., & Manzie, C. (2020). Control of an isolated microgrid using hierarchical economic model predictive control. Applied Energy, 280(September), 115960. https://doi.org/10.1016/j.apenergy.2020.115960; Consejo privado de competitividad. (2021). INFORME NACIONAL DE COMPETITIVIDAD 2021-2022 (Issue 2021).; Cordroch, L., Hilpert, S., & Wiese, F. (2022). Why renewables and energy efficiency are not enough - the relevance of sufficiency in the heating sector for limiting global warming to 1.5 °C. Technological Forecasting and Social Change, 175(February 2021). https://doi.org/10.1016/j.techfore.2021.121313; Correa-henao, G. J., & Rojas-zerpa, J. C. (2017). generación distribuida en zonas no interconectadas connected areas. 14, 70–87.; Cozzi, L., Gould, T., Bouckart, S., Crow, D., Kim, T.-Y., McGlade, C., Olejarnik, P., Wanner, B., & Wetzel, D. (2020). World Energy Outlook 2020. 2050(October), 213–250. https://www.oecd-ilibrary.org/energy/world-energy-outlook-2020_557a761b-en; Cuervoa, F. I., & Boterob, S. B. (2014). Application of real options in decision-making in power markets. Estudios Gerenciales, 30(133), 397–407. https://doi.org/10.1016/j.estger.2014.06.003; de Siqueira, L. M. S., & Peng, W. (2021). Control strategy to smooth wind power output using battery energy storage system: A review. Journal of Energy Storage, 35(January), 102252. https://doi.org/10.1016/j.est.2021.102252; Després, J., Mima, S., Kitous, A., Criqui, P., Hadjsaid, N., & Noirot, I. (2017). Storage as a flexibility option in power systems with high shares of variable renewable energy sources: a POLES-based analysis. Energy Economics, 64, 638–650. https://doi.org/10.1016/j.eneco.2016.03.006; Dhar, A., Naeth, M. A., Jennings, P. D., & Gamal El-Din, M. (2020). Perspectives on environmental impacts and a land reclamation strategy for solar and wind energy systems. Science of the Total Environment, 718, 134602. https://doi.org/10.1016/j.scitotenv.2019.134602; Dibaba, H., Demidov, I., Vanadzina, E., Honkapuro, S., & Pinomaa, A. (2022). Feasibility of rural electrification and connectivity—A methodology and case study. Applied Energy, 315(April), 119013. https://doi.org/10.1016/j.apenergy.2022.119013; Energy Section of the Economic and Social Commission for Western Asia Sustainable Development Policies Division. (2016). Guidebook for Project Developers for Preparing Renewable Energy Investments Business Plans. United Nations Development Account (DA) Project on Promoting Renewable Energy Investments for Climate Change Mitigation and Sustainable Development.; Eraso Checa, F., & Escobar Rosero, E. (2018). Metodología para la determinación de características del viento y evaluación del potencial de energía eólica en Túquerres-Nariño. Revista Científica, 1(31), 19–31. https://doi.org/10.14483/23448350.12304; Fathy, A., Ferahtia, S., Rezk, H., Yousri, D., Abdelkareem, M. A., & Olabi, A. G. (2022). Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid. Energy, 247, 123447. https://doi.org/10.1016/j.energy.2022.123447; Florez Espinosa, F. (2020). Estado de la cobertura eléctrica y las zonas no interconectadas en la región central. Matriz Energetica En La Región Central, 117. https://regioncentralrape.gov.co/matriz-energetica/; Fouquet, D. (2013). Policy instruments for renewable energy - From a European perspective. Renewable Energy, 49(11), 15–18. https://doi.org/10.1016/j.renene.2012.01.075; Franklin, R. (n.d.). Energización rural en un contexto colombiano en Nariño : ¿ económicamente sostenible ? 1–30.; Gaona, E. E., Trujillo, C. L., & Guacaneme, J. A. (2015). Rural microgrids and its potential application in Colombia. Renewable and Sustainable Energy Reviews, 51, 125–137. https://doi.org/10.1016/j.rser.2015.04.176; García Franco, J. F. (2020). Diseño de Programas de Uso Racional y Eficiente de la Energía Eléctrica en Zonas No Interconectadas en Colombia. https://repositorio.unal.edu.co/handle/unal/78113#.X6CfvRgbPYI.mendeley; Ghorbani, N., Kasaeian, A., Toopshekan, A., Bahrami, L., & Maghami, A. (2018). Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability. Energy, 154, 581–591. https://doi.org/10.1016/j.energy.2017.12.057; Gómez-Hernández, D. F., Domenech, B., Moreira, J., Farrera, N., López-González, A., & Ferrer-Martí, L. (2019). Comparative evaluation of rural electrification project plans: A case study in Mexico. Energy Policy, 129(July 2018), 23–33. https://doi.org/10.1016/j.enpol.2019.02.004; Gómez-Navarro, T., & Ribó-Pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90(March), 131–141. https://doi.org/10.1016/j.rser.2018.03.015; Gönül, Ö., Duman, A. C., Barutçu, B., & Güler, Ö. (2022). Techno-economic analysis of PV systems with manually adjustable tilt mechanisms. Engineering Science and Technology, an International Journal, 35. https://doi.org/10.1016/j.jestch.2022.101116; Harris, W., & Ehsani, M. (2017). Socioeconomically sustainable rural microgrid engineering design. GHTC 2017 - IEEE Global Humanitarian Technology Conference, Proceedings, 2017-Janua, 1–9. https://doi.org/10.1109/GHTC.2017.8239319; Harsh Gupta, S. R. (2009). Geothermal Energy. 2, 1–42. papers2://publication/uuid/5773C632-2737-4B41-9C08-51A3DB9B76DA; Humberto Rodríguez Murcia. (2016). Formulación de una Propuesta para una Acción de Mitigación Nacionalmente Apropiada (NAMA) para las Zonas No Interconectadas (ZNI) de Colombia Informe Final Consolidado Mayo de 2016. Organización Latinoamericana de Energía, 247.; IEA. (2020). Renewables. Data Explorer. https://doi.org/10.1002/peng.20026; IEA. (2021). Key World Energy Statistics 2021. 1–82.; Ishraque, F., Shezan, S. A., Ali, M. M., & Rashid, M. M. (2021). Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources. Applied Energy, 292(April), 116879. https://doi.org/10.1016/j.apenergy.2021.116879; Jägerhag, C., & Shende, V. (2018). Grid-connected microgrids: Evaluation of benefits and challenges for the distribution system operator. https://odr.chalmers.se/bitstream/20.500.12380/255735/1/255735.pdf; Jin, X., Shen, Y., & Zhou, Q. (2022). A systematic review of robust control strategies in DC microgrids. The Electricity Journal, 35(5), 107125. https://doi.org/10.1016/j.tej.2022.107125; Kadoić, N., Ređep, N. B., & Divjak, B. (2017). Decision making with the analytic network process. Proceedings of the 14th International Symposium on Operational Research, SOR 2017, 2017-Septe(August), 180–186. https://doi.org/10.1007/0-387-33987-6; Kallio, S., & Siroux, M. (2022). Hybrid renewable energy systems based on micro-cogeneration. Energy Reports, 8, 762–769. https://doi.org/10.1016/j.egyr.2021.11.158; Kallio, S., & Siroux, M. (2022). Hybrid renewable energy systems based on micro-cogeneration. Energy Reports, 8, 762–769. https://doi.org/10.1016/j.egyr.2021.11.158 Kamal, M., Ashraf, I., & Fernandez, E. (2022). Planning and optimization of microgrid for rural electrification with integration of renewable energy resources. Journal of Energy Storage, 52(PA), 104782. https://doi.org/10.1016/j.est.2022.104782; Karaveli, A. B., Akinoglu, B. G., & Soytas, U. (2018). Measurement of economic feasibility of photovoltaic power plants - application to Turkey. PVCon 2018 - International Conference on Photovoltaic Science and Technologies, 1–4. https://doi.org/10.1109/PVCon.2018.8523967; Khasawneh, H., & Illindala, M. (2015). Supercapacitor Cycle Life Equalization in a Microgrid Through Flexible Distribution of Energy and Storage Resources. IEEE Transactions on Industry Applications, 51(3), 1962–1969. https://doi.org/10.1109/TIA.2014.2369815; Khodayar, M. E. (2017). Rural electrification and expansion planning of off-grid microgrids. Electricity Journal, 30(4), 68–74. https://doi.org/10.1016/j.tej.2017.04.004; Kirimtat, A., Tasgetiren, M. F., Brida, P., & Krejcar, O. (2022). Control of PV integrated shading devices in buildings: A review. Building and Environment, 214(November 2021), 108961.; Kitson, J., Williamson, S. J., Harper, P. W., McMahon, C. A., Rosenberg, G., Tierney, M. J., Bell, K., & Gautam, B. (2018). Modelling of an expandable, reconfigurable, renewable DC microgrid for off-grid communities. Energy, 160, 142–153. https://doi.org/10.1016/j.energy.2018.06.219; Kumar, P., Pal, N., & Sharma, H. (2022). Optimization and techno-economic analysis of a solar photo-voltaic/biomass/diesel/battery hybrid off-grid power generation system for rural remote electrification in eastern India. Energy, 247, 123560. https://doi.org/10.1016/j.energy.2022.123560; Larentis, D. G., Collischonn, W., Olivera, F., & Tucci, C. E. M. (2010). Gis-based procedures for hydropower potential spotting. Energy, 35(10), 4237–4243. https://doi.org/10.1016/j.energy.2010.07.014; Leary, J., Czyrnek-Delêtre, M., Alsop, A., Eales, A., Marandin, L., Org, M., Craig, M., Ortiz, W., Casillas, C., Persson, J., Dienst, C., Brown, E., While, A., Cloke, J., & Latoufis, K. (2020). Finding the niche: A review of market assessment methodologies for rural electrification with small scale wind power. Renewable and Sustainable Energy Reviews, 133(July). https://doi.org/10.1016/j.rser.2020.110240; Lipu, M. S. H., Ansari, S., Miah, S., Hasan, K., Meraj, S. T., Faisal, M., Jamal, T., Ali, S. H. M., Hussain, A., Muttaqi, K. M., & Hannan, M. A. (2022). A review of controllers and optimizations based scheduling operation for battery energy storage system towards decarbonization in microgrid : Challenges and future directions. Journal of Cleaner Production, 360(October 2021), 132188. https://doi.org/10.1016/j.jclepro.2022.132188; Löffler, K., Burandt, T., Hainsch, K., Oei, P. Y., Seehaus, F., & Wejda, F. (2022). Chances and barriers for Germany’s low carbon transition - Quantifying uncertainties in key influential factors. Energy, 239. https://doi.org/10.1016/j.energy.2021.121901; López-González, A., Domenech, B., & Ferrer-Martí, L. (2018). Lifetime, cost and fuel efficiency in diesel projects for rural electrification in Venezuela. Energy Policy, 121(March), 152–161. https://doi.org/10.1016/j.enpol.2018.06.023; Mandelli, S., Barbieri, J., Mereu, R., & Colombo, E. (2016). Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renewable and Sustainable Energy Reviews, 58, 1621–1646. https://doi.org/10.1016/j.rser.2015.12.338; Mazzola, S., Vergara, C., Astolfi, M., Li, V., Perez-Arriaga, I., & Macchi, E. (2017). Assessing the value of forecast-based dispatch in the operation of off-grid rural microgrids. Renewable Energy, 108, 116–125. https://doi.org/10.1016/j.renene.2017.02.040; McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83(83), 37–64.; Mesjasz-Lech, A. (2015). Planning of Production Resources use and Environmental Effects on the Example of a Thermal Power Plant. Procedia - Social and Behavioral Sciences, 213, 539–545. https://doi.org/10.1016/j.sbspro.2015.11.447; Miranda, D. S., Sun, Y., Cobben, J. F. G., & Gibescu, M. (2016). Impact of energy storage on island grid dynamics: A case study of Bonaire. 2016 IEEE International Energy Conference, ENERGYCON 2016, April. https://doi.org/10.1109/ENERGYCON.2016.7513940; Motjoadi, V., Bokoro, P. N., & Onibonoje, M. O. (2020). A review of microgrid-based approach to rural electrification in South Africa: Architecture and policy framework. Energies, 13(9), 1–23. https://doi.org/10.3390/en13092193; Núñez Viveros, C. A., Gallego Hidalgo, G. J., & Vera, G. B. (2013). Methodological design for the evaluation of energy projects with prices uncertainty: The case of cogeneration in a firm in Cali. Estudios Gerenciales, 29(126), 58–71. https://doi.org/10.1016/S0123-5923(13)70020-2; Ñustes, W., & Rivera, S. (2017). Colombia: Territorio De Inversión En Fuentes No Convencionales De Energía Renovable Para La Generación Eléctrica. Ingeniería Investigación y Desarrollo, 17(1), 37–48. https://doi.org/10.19053/1900771x.v17.n1.2017.5954; ONU. (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Asamblea General, 15900, 40. http://www.un.org/ga/search/view_doc.asp?symbol=A/70/L.1&Lang=S; Othman, R., & Hatem, T. M. (2022). Assessment of PV technologies outdoor performance and commercial software estimation in hot and dry climates. Journal of Cleaner Production, 340(May 2020), 130819. https://doi.org/10.1016/j.jclepro.2022.130819; Quijano, N., Pedraza, A., Velásquez, M., Jiménez Estévez, G., Cadena, Á., Becerra, J. M., & Ramírez, Á. (2019). Microrredes Aisladas En La Guajira: Diseño E Implementación. Revista de Ingeniería, 48, 54–65. https://doi.org/10.16924/revinge.48.7; Rahman, A., Farrok, O., & Haque, M. M. (2022). Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews, 161(March). https://doi.org/10.1016/j.rser.2022.112279; Rai, A., Shrivastava, A., Jana, K. C., & Jayalakshmi, N. S. (2021). Sustainable Energy , Grids and Networks Techno-economic-environmental and sociological study of a microgrid for the electrification of difficult un-electrified isolated villages. Sustainable Energy, Grids and Networks, 28, 100548. https://doi.org/10.1016/j.segan.2021.100548; Ricardo Echeverri Martínez Diego Echeverri Ibarra, J. C. O. G. C. L. M. (2018). Selección de una infraestructura de medición inteligente de energía usando una técnica de decisión multicriterio . Scientia Et Technica, 23(02), 136, 142. https://www.redalyc.org/jatsRepo/849/84958001002/html/index.html; Rodríguez-Velásquez, R., Osma-Pinto, G., & Ordóñez-Plata, G. (2017). Energy planning challenges of microgrid in remote rural regions with scattered loads. Sicel 2017, 1–8.; Roslan, M. F., Hannan, M. A., Ker, P. J., Mannan, M., Muttaqi, K. M., & Mahlia, T. I. (2022). Microgrid control methods toward achieving sustainable energy management: A bibliometric analysis for future directions. Journal of Cleaner Production, 348(March), 131340. https://doi.org/10.1016/j.jclepro.2022.131340; Rudas, G. (2014). Desarrollo Y Aplicación Piloto De La Metodología De Evaluación De Los Cobeneficios De Acciones De Mitigación Del Cambio Climático En Colombia. Econometria Consultores.; Saaty, R. W. (1987). The analytic hierarchy process-what it is and how it is used. Mathematical Modelling, 9(3–5), 161–176. https://doi.org/10.1016/0270-0255(87)90473-8; Sagastume Gutiérrez, A., Cabello Eras, J. J., Hens, L., & Vandecasteele, C. (2020). The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. Journal of Cleaner Production, 269. https://doi.org/10.1016/j.jclepro.2020.122317; Santos, J. (2015). Metodología de ayuda a la decisión para la electrificación rural apropiada en países en vías de desarrollo . 415.; Saraswat, S. K., & Digalwar, A. K. (2021). Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon’s entropy fuzzy multi-criteria decision approach. Renewable Energy, 171, 58–74. https://doi.org/10.1016/j.renene.2021.02.068; Shen, L. yin, Tam, V. W. Y., Tam, L., & Ji, Y. bo. (2010). Project feasibility study: the key to successful implementation of sustainable and socially responsible construction management practice. Journal of Cleaner Production, 18(3), 254–259. https://doi.org/10.1016/j.jclepro.2009.10.014; Shezan, S. A. (2021). Feasibility analysis of an islanded hybrid wind-diesel-battery microgrid with voltage and power response for offshore Islands. Journal of Cleaner Production, 288, 125568. https://doi.org/10.1016/j.jclepro.2020.125568; Singh, D., Gautam, A. K., & Chaudhary, R. (2022). Potential and performance estimation of free-standing and building integrated photovoltaic technologies for different climatic zones of India. Energy and Built Environment, 3(1), 40–55.; Sinha, S., & Chandel, S. S. (2014). Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 32, 192–205. https://doi.org/10.1016/j.rser.2014.01.035; Superservicios. (2018). Diagnóstico Anual de la Prestación del Servicio de Energía Eléctrica en las Zonas no Interconectadas. In Diagnóstico De La Prestación Del Servicio De Energía Eléctrica 2017 (Issue September). https://www.superservicios.gov.co/sites/default/archivos/SSPD Publicaciones/Publicaciones/2018/Sep/diagnosticozni-superservicios-oct-2017.pdf; Tecnología, M. de ciencia y. (2014). Impactos ambientales de la producción de electricidad. Asociación de Productores de Energías Renovables, 42. http://proyectoislarenovable.iter.es/wp-content/uploads/2014/05/17_Estudio_Impactos_MA_mix_electrico_APPA.pdf; Thakar, S., Vijay, A. S., & Doolla, S. (2019). System reconfiguration in microgrids. Sustainable Energy, Grids and Networks, 17, 100191. https://doi.org/10.1016/j.segan.2019.100191; The Pacific Power Association. (2020). Micro Hydropower system design guidlines. 163–172. https://doi.org/10.1201/9781420031485-19; Ton, D. T., & Smith, M. A. (2012). The U.S. Department of Energy’s Microgrid Initiative. Electricity Journal, 25(8), 84–94. https://doi.org/10.1016/j.tej.2012.09.013; Tong, W. (2010). Fundamentals of wind energy. WIT Transactions on State of the Art in Science and Engineering, 44, 1755–8336. https://doi.org/10.2495/978-1-84564; Turkenburg, W., Arent, D. J., Bertani, R., Faaij, A., Hand, M., Krewitt, W., Larson, E. D., Lund, J., Mehos, M., Merrigan, T., Mitchell, C., Moreira, J. R., Sinke, W., Sonntag-O’Brien, V., Thresher, B., van Sark, W., & Usher, E. (2012). Chapter 11 - Renewable Energy. Global Energy Assessment - Toward a Sustainable Future, 811–821.; Tutak, M., & Brodny, J. (2022). Renewable energy consumption in economic sectors in the EU-27. The impact on economics, environment and conventional energy sources. A 20-year perspective. Journal of Cleaner Production, 345(December 2021). https://doi.org/10.1016/j.jclepro.2022.131076; UPME. (2016). Parte IV Anexo 1. Características del entorno eléctrico. Smart Grids Colombia Visión 2030, 22. http://www.upme.gov.co/Estudios/2016/SmartGrids2030/4_Parte4_Anexo1_Proyecto_SmartGrids.pdf; Viteri, J. P., Henao, F., Cherni, J., & Dyner, I. (2019). Optimizing the insertion of renewable energy in the off-grid regions of Colombia. Journal of Cleaner Production, 235, 535–548. https://doi.org/10.1016/j.jclepro.2019.06.327; Wang, W., Yuan, B., Sun, Q., & Wennersten, R. (2022). Application of energy storage in integrated energy systems — A solution to fluctuation and uncertainty of renewable energy. Journal of Energy Storage, 52(PA), 104812. https://doi.org/10.1016/j.est.2022.104812; Zahnd, A., & Kimber, H. M. K. (2009). Benefits from a renewable energy village electrification system. Renewable Energy, 34(2), 362–368. https://doi.org/10.1016/j.renene.2008.05.011; http://hdl.handle.net/10654/43753; instname:Universidad Militar Nueva Granada; reponame:Repositorio Institucional Universidad Militar Nueva Granada; repourl:https://repository.unimilitar.edu.co
    • Online Access:
      https://doi.org/10.1016/j.renene.2012.01.075
      https://doi.org/10.1002/peng.20026
      https://doi.org/10.1016/j.tej.2017.04.004
      https://doi.org/10.1016/j.sbspro.2015.11.447
      https://doi.org/10.1016/0270-0255(87)90473-8
      https://doi.org/10.1016/j.jclepro.2020.125568
      https://doi.org/10.1201/9781420031485-19
      https://doi.org/10.2495/978-1-84564
      http://hdl.handle.net/10654/43753
    • Rights:
      http://creativecommons.org/licenses/by-nc-nd/4.0/ ; info:eu-repo/semantics/openAccess ; http://purl.org/coar/access_right/c_abf2 ; Attribution-NonCommercial-NoDerivatives 4.0 International ; Acceso abierto
    • Accession Number:
      edsbas.667F088E