Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Analysis of Effects of Spatial Distributed Soil Properties and Soil Moisture Behavior on Hourly Streamflow Estimate through the Integration of SWAT and LSM.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      This study addresses the challenge of accurately estimating hourly flow and soil moisture by integrating the Soil and Water Assessment Tool (SWAT) with a Land Surface Model (LSM). Our approach enhances SWAT by incorporating spatially distributed soil properties and a physically-based soil moisture process, using the Noah LSM for hourly soil moisture estimation. This integration captures spatial variations in soil moisture and hydraulic properties from remote sensing across the watershed. The parameter sensitivity analysis and the calibration of hourly flow were significantly impacted by the physically-based hourly soil moisture routing and the incorporation of spatially distributed soil properties. Consequently, the modified SWAT model showed improved accuracy in hourly flow simulations for long-term and multiple rainfall events. Validation results showed significant improvements, with Coefficient of Determination (R2) and Nash and Sutcliffe Efficiency (NSE) increasing by 25.95% and 33.3%, respectively, and Percent Bias (PBIAS) decreasing by 85.8%. Notably, the average error for peak flows across eight events decreased by 49%. These findings highlight the importance of initializing soil parameters based on spatial soil moisture distribution and incorporating physical process-based moisture routing to enhance hourly flow simulation accuracy. Future research should focus on validating the physical feasibility of the soil parameter set in the study area with detailed hourly flow and soil moisture data and exploring its applicability in various regions. This study provides valuable insights for the scientific community, water resources, and agricultural decision-makers regarding integrated modeling of soil moisture and hourly flow, which can inform dam operation management, disaster planning, and crop yield improvement. [ABSTRACT FROM AUTHOR]