Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request
Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request
Conference

Model selection by penalization in mixture of experts models with a non-asymptotic approach

Subjects: [INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]; [STAT.ME] Statistics [stat]/Methodology [stat.ME]; Mixture of experts models

  • Source: JDS 2022-53èmes Journées de Statistique de la Société Française de Statistique (SFdS)JDS 2022-53èmes Journées de Statistique de la Société Française de Statistique (SFdS), Jun 2022,

Record details

×
Academic Journal

Penalization of Barycenters in the Wasserstein Space

Subjects: [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing; [STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]; 0101 mathematics

  • Source: SIAM Journal on Mathematical AnalysisSIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2019, 51 (3), pp.2261-2285

Record details

×
Academic Journal

Estimating the Number of Block Boundaries from Diagonal Blockwise Matrices Without Penalization

Subjects: Segmentation; [SDV]Life Sciences [q-bio]; Hi-C data

  • Source: Scandinavian Journal of StatisticsScandinavian Journal of Statistics, Wiley, 2017, 44 (2), pp.563-580. ⟨10.1111/sjos.12266⟩Scandinavian Journal of Statistics, Wiley, 2017, 44 (2),

Record details

×
Academic Journal

Model selection by resampling penalization

Subjects: model selection; penalization; histogram selection

  • Source: Electronic Journal of StatisticsElectronic Journal of Statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2009, 3, pp.557--624. ⟨10.1214/08-EJS196⟩Electronic Journal

Record details

×
Book

Model Selection by Bootstrap Penalization for Classification

Subjects: empirical processes; convergence; [STAT.TH] Statistics [stat]/Statistics Theory [stat.TH]

  • Source: Lecture Notes in Computer Science ISBN: 9783540222828Machine LearningMachine Learning, Springer Verlag, 2007, 66 (2-3), pp.165-207. ⟨10.1007/s10994-006-7679-y⟩Machine Learning,

Record details

×
Academic Journal

Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion

Subjects: FOS: Computer and information sciences; Matrix completion; low-rank matrix estimation

  • Source: Annals of StatisticsAnnals of Statistics, Institute of Mathematical Statistics, 2011, 39 (5), pp.2302-2329Ann. Statist. 39, no. 5 (2011), 2302-2329

Record details

×
  • 1-10 of  223 results for ""penalization""